Advertisement

Cilia pp 69-82 | Cite as

Recombinant Reconstitution and Purification of the IFT-B Core Complex from Chlamydomonas reinhardtii

  • Michael TaschnerEmail author
  • Esben Lorentzen
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1454)

Abstract

Eukaryotic cilia and flagella are assembled and maintained by intraflagellar transport (IFT), the bidirectional transport of proteins between the ciliary base and tip. IFT is mediated by the multi-subunit IFT complex, which simultaneously binds cargo proteins and the ciliary motors. So far 22 subunits of the IFT complex have been identified, but insights into the biochemical architecture and especially the three-dimensional structure of this machinery are only starting to emerge because of difficulties in obtaining homogeneous material suitable for structural analysis. Here, we describe a protocol for the purification and reconstitution of a complex containing nine Chlamydomonas reinhardtii IFT proteins, commonly known as the IFT-B core complex. In our hands, this protocol routinely yields several milligrams of pure complex suitable for structural analysis by X-ray crystallography and single-particle cryo-electron microscopy.

Key words

Intraflagellar transport IFT-B Protein purification IFT-B core complex X-ray crystallography 

References

  1. 1.
    Ishikawa H, Marshall WF (2011) Ciliogenesis: building the cell’s antenna. Nat Rev Mol Cell Biol 12:222–234CrossRefGoogle Scholar
  2. 2.
    Rosenbaum JL, Witman GB (2002) Intraflagellar transport. Nat Rev Mol Cell Biol 3:813–825CrossRefGoogle Scholar
  3. 3.
    Kozminski KG, Johnson KA, Forscher P, Rosenbaum JL (1993) A motility in the eukaryotic flagellum unrelated to flagellar beating. Proc Natl Acad Sci U S A 90:5519–5523CrossRefPubMedCentralGoogle Scholar
  4. 4.
    Cole DG, Cande WZ, Baskin RJ, Skoufias DA, Hogan CJ, Scholey JM (1992) Isolation of a sea urchin egg kinesin-related protein using peptide antibodies. J Cell Sci 101(Pt 2):291–301Google Scholar
  5. 5.
    Walther Z, Vashishtha M, Hall JL (1994) The Chlamydomonas FLA10 gene encodes a novel kinesin-homologous protein. J Cell Biol 126:175–188CrossRefGoogle Scholar
  6. 6.
    Pazour GJ, Wilkerson CG, Witman GB (1998) A dynein light chain is essential for the retrograde particle movement of intraflagellar transport (IFT). J Cell Biol 141:979–992CrossRefPubMedCentralGoogle Scholar
  7. 7.
    Porter ME, Bower R, Knott JA, Byrd P, Dentler W (1999) Cytoplasmic dynein heavy chain 1b is required for flagellar assembly in Chlamydomonas. Mol Biol Cell 10:693–712CrossRefPubMedCentralGoogle Scholar
  8. 8.
    Perrone CA, Tritschler D, Taulman P, Bower R, Yoder BK, Porter ME (2003) A novel dynein light intermediate chain colocalizes with the retrograde motor for intraflagellar transport at sites of axoneme assembly in chlamydomonas and Mammalian cells. Mol Biol Cell 14:2041–2056CrossRefPubMedCentralGoogle Scholar
  9. 9.
    Hou Y, Pazour GJ, Witman GB (2004) A dynein light intermediate chain, D1bLIC, is required for retrograde intraflagellar transport. Mol Biol Cell 15:4382–4394CrossRefPubMedCentralGoogle Scholar
  10. 10.
    Pazour GJ, Agrin N, Leszyk J, Witman GB (2005) Proteomic analysis of a eukaryotic cilium. J Cell Biol 170:103–113CrossRefPubMedCentralGoogle Scholar
  11. 11.
    Piperno G, Mead K (1997) Transport of a novel complex in the cytoplasmic matrix of Chlamydomonas flagella. Proc Natl Acad Sci U S A 94:4457–4462CrossRefPubMedCentralGoogle Scholar
  12. 12.
    Cole DG, Diener DR, Himelblau AL, Beech PL, Fuster JC, Rosenbaum JL (1998) Chlamydomonas kinesin-II-dependent intraflagellar transport (IFT): IFT particles contain proteins required for ciliary assembly in Caenorhabditis elegans sensory neurons. J Cell Biol 141:993–1008CrossRefPubMedCentralGoogle Scholar
  13. 13.
    Taschner M, Bhogaraju S, Lorentzen E (2012) Architecture and function of IFT complex proteins in ciliogenesis. Differentiation 83:S12–S22CrossRefGoogle Scholar
  14. 14.
    Lucker BF, Behal RH, Qin H, Siron LC, Taggart WD, Rosenbaum JL, Cole DG (2005) Characterization of the intraflagellar transport complex B core: direct interaction of the IFT81 and IFT74/72 subunits. J Biol Chem 280:27688–27696CrossRefGoogle Scholar
  15. 15.
    Mukhopadhyay S, Wen X, Chih B, Nelson CD, Lane WS, Scales SJ, Jackson PK (2010) TULP3 bridges the IFT-A complex and membrane phosphoinositides to promote trafficking of G protein-coupled receptors into primary cilia. Genes Dev 24:2180–2193CrossRefPubMedCentralGoogle Scholar
  16. 16.
    Baker SA, Freeman K, Luby-Phelps K, Pazour GJ, Besharse JC (2003) IFT20 links kinesin II with a mammalian intraflagellar transport complex that is conserved in motile flagella and sensory cilia. J Biol Chem 278:34211–34218CrossRefGoogle Scholar
  17. 17.
    Wang Z, Fan Z-C, Williamson SM, Qin H (2009) Intraflagellar transport (IFT) protein IFT25 is a phosphoprotein component of IFT complex B and physically interacts with IFT27 in Chlamydomonas. PLoS One 4, e5384CrossRefPubMedCentralGoogle Scholar
  18. 18.
    Fan Z-C, Behal RH, Geimer S, Wang Z, Williamson SM, Zhang H, Cole DG, Qin H (2010) Chlamydomonas IFT70/CrDYF-1 is a core component of IFT particle complex B and is required for flagellar assembly. Mol Biol Cell 21:2696–2706CrossRefPubMedCentralGoogle Scholar
  19. 19.
    Follit JA, Xu F, Keady BT, Pazour GJ (2009) Characterization of mouse IFT complex B. Cell Motil Cytoskeleton 66:457–468CrossRefPubMedCentralGoogle Scholar
  20. 20.
    Omori Y, Zhao C, Saras A, Mukhopadhyay S, Kim W, Furukawa T, Sengupta P, Veraksa A, Malicki J (2008) Elipsa is an early determinant of ciliogenesis that links the IFT particle to membrane-associated small GTPase Rab8. Nat Cell Biol 10:437–444CrossRefGoogle Scholar
  21. 21.
    Taschner M, Bhogaraju S, Vetter M, Morawetz M, Lorentzen E (2011) Biochemical mapping of interactions within the intraflagellar transport (IFT) B core complex: IFT52 binds directly to four other IFT-B subunits. J Biol Chem 286:26344–26352CrossRefPubMedCentralGoogle Scholar
  22. 22.
    Taschner M, Kotsis F, Braeuer P, Kuehn EW, Lorentzen E (2014) Crystal structures of IFT70/52 and IFT52/46 provide insight into intraflagellar transport B core complex assembly. J Cell Biol 207:269–282CrossRefPubMedCentralGoogle Scholar
  23. 23.
    Bhogaraju S, Taschner M, Morawetz M, Basquin C, Lorentzen E (2011) Crystal structure of the intraflagellar transport complex 25/27. EMBO J 30:1907–1918CrossRefPubMedCentralGoogle Scholar
  24. 24.
    Bhogaraju S, Cajanek L, Fort C, Blisnick T, Weber K, Taschner M, Mizuno N, Lamla S, Bastin P, Nigg EA, Lorentzen E (2013) Molecular basis of tubulin transport within the cilium by IFT74 and IFT81. Science 341:1009–1012CrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Department of Structural Cell BiologyMax-Planck-Institute of BiochemistryMartinsriedGermany

Personalised recommendations