Advertisement

Cilia pp 53-67 | Cite as

Methods to Study Interactions Between Ciliogenesis and Autophagy

  • Birgit Hegner Satir
  • Olatz PampliegaEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1454)

Abstract

Autophagy is a catabolic pathway for the degradation and recycling of intracellular components, contributing to maintain cell homeostasis. Changes in autophagy activity can be monitored by a variety of biochemical and functional assays that should be used in combination. Recently, it has been described that signaling from the primary cilium modulates autophagy. This novel and reciprocal interaction will impact diverse aspects of the cell biology in healthy and pathophysiological conditions. Here, we describe methods to monitor autophagy activity in cilia mutants, as well as the use of autophagy mutants to monitor ciliogenesis.

Key words

Primary cilia Autophagy mCherry-GFP-LC3 Immunofluorescence Western blotting LC3-II 

References

  1. 1.
    Orhon I, Dupont N et al (2015) Autophagy and regulation of cilia function and assembly. Cell Death Differ 22(3):389–397CrossRefGoogle Scholar
  2. 2.
    Pampliega O, Orhon I et al (2013) Functional interaction between autophagy and ciliogenesis. Nature 502(7470):194–200CrossRefPubMedCentralGoogle Scholar
  3. 3.
    Tang Z, Lin MG et al (2013) Autophagy promotes primary ciliogenesis by removing OFD1 from centriolar satellites. Nature 502(7470):254–257CrossRefPubMedCentralGoogle Scholar
  4. 4.
    Esteban-Martinez L, Boya P (2015) Autophagic flux determination in vivo and ex vivo. Methods (San Diego, CA) 75:79–86CrossRefGoogle Scholar
  5. 5.
    Klionsky DJ, Abdalla FC et al (2012) Guidelines for the use and interpretation of assays for monitoring autophagy. Autophagy 8(4):445–544CrossRefPubMedCentralGoogle Scholar
  6. 6.
    Mizushima N, Yoshimori T (2007) How to interpret LC3 immunoblotting. Autophagy 3(6):542–545CrossRefGoogle Scholar
  7. 7.
    Pankiv S, Clausen TH et al (2007) p62/SQSTM1 binds directly to Atg8/LC3 to facilitate degradation of ubiquitinated protein aggregates by autophagy. J Biol Chem 282(33):24131–24145CrossRefGoogle Scholar
  8. 8.
    Pazour GJ, Dickert BL et al (2000) Chlamydomonas IFT88 and its mouse homologue, polycystic kidney disease gene tg737, are required for assembly of cilia and flagella. J Cell Biol 151(3):709–718CrossRefPubMedCentralGoogle Scholar
  9. 9.
    Peterson GL (1977) A simplification of the protein assay method of Lowry et al. which is more generally applicable. Anal Biochem 83(2):346–356. doi: 10.1016/0003-2697(77)90043-4 CrossRefGoogle Scholar
  10. 10.
    Schnell U, Dijk F et al (2012) Immunolabeling artifacts and the need for live-cell imaging. Nat Methods 9(2):152–158CrossRefGoogle Scholar
  11. 11.
    Omran H, Loges NT (2009) Chapter 7 – Immunofluorescence staining of ciliated respiratory epithelial cells. In: Stephen MK, Gregory JP (eds) Methods in cell biology, vol 91. Academic, New York, NY, pp 123–133Google Scholar
  12. 12.
    Hung SY, Huang WP et al (2015) LC3 overexpression reduces Abeta neurotoxicity through increasing alpha7nAchR expression and autophagic activity in neurons and mice. Neuropharmacology 93:243–251CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Department of Anatomy and Structural BiologyAlbert Einstein College of MedicineBronxUSA
  2. 2.Institut des Maladies Neurodégénératives, UMR 5293Université de BordeauxBordeaux CedexFrance
  3. 3.CNRSInstitut des Maladies Neurodégénératives, UMR 5293Bordeaux CedexFrance

Personalised recommendations