Cilia pp 15-33 | Cite as

Targeting of ASH Domain-Containing Proteins to the Centrosome

  • Patricia Verdier
  • Stine K. Morthorst
  • Lotte B. PedersenEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1454)


A growing number of studies have used new generation technologies to characterize the protein constituents of cilia and centrosomes. This has led to the identification of a vast number of candidate ciliary or centrosomal proteins, whose subcellular localization needs to be investigated and validated. Here, we describe a simple and inexpensive method for analyzing the subcellular localization of candidate cilium- or centrosome-associated proteins, and we illustrate the utility as well as the pitfalls of this method by applying it to a group of ASH (ASPM, SPD-2, Hydin) domain-containing proteins, previously predicted to be cilia- or centrosome-associated proteins based on bioinformatic analyses. By generating plasmids coding for epitope-tagged full-length (FL) or truncated versions of the ASH domain-containing proteins TRAPPC8, TRAPPC13, NPHP4, and DLEC1, followed by expression and quantitative immunofluorescence microscopy (IFM) analysis in cultured human telomerase-immortalized retinal pigmented epithelial (hTERT-RPE1) cells, we could confirm that TRAPPC13 and NPHP4 are highly enriched at the base of primary cilia, whereas DLEC1 seems to associate specifically with motile cilia. Results for TRAPPC8 were inconclusive since epitope-tagged TRAPPC8 fusion proteins were unstable/degraded in cells, emphasizing the need for combining IFM analysis with western blotting in such studies. The method described should be applicable to other candidate ciliary or centrosomal proteins as well.

Key words

ASH domain Centrosome Cilia TRAPPC8 TRAPPC13 NPHP4 DLEC1 



ASPM, SPD-2, Hydin


American-type culture collection


4′ 6-Diamidino-2-phenylindole, dihydrochloride


Deleted in lung and esophageal cancer 1


Dulbecco’s modified Eagle’s medium




Enhanced chemiluminescence


Ethylenediaminetetraacetic acid


Enhanced GFP


Flagella-associated protein


Full length


Green fluorescent protein


Human telomerase-immortalized retinal pigmented epithelial


Immunofluorescence microscopy




Loading sample buffer


Mean fluorescence intensity


Major sperm protein


Nephronophthisis 4


Oculocerebrorenal syndrome of Lowe


Pericentrin-AKAP450 centrosomal targeting


Phosphate-buffered saline


Room temperature


Small interfering RNA


Tris-buffered saline with Tween-20




Transport protein particle


TRAPP complex



This work was supported by the University of Copenhagen Excellence Programme for Interdisciplinary Research and the Danish Council for Independent Research (1331-00254). S.K.M. was partially supported by a Ph.D. fellowship from the Department of Biology, University of Copenhagen. We thank Sophie Saunier for the gift of human NPHP4 cDNA, Søren L. Johansen for technical assistance, Kenneth B. Schou for assistance with DLEC1 and NPHP4 PCR and cloning, and Louise Lindbæk for assistance with image analysis.


  1. 1.
    Arnaiz O, Cohen J, Tassin AM, Koll F (2014) Remodeling Cildb, a popular database for cilia and links for ciliopathies. Cilia 3:9. doi: 10.1186/2046-2530-3-9 CrossRefPubMedCentralGoogle Scholar
  2. 2.
    Ponting CP (2006) A novel domain suggests a ciliary function for ASPM, a brain size determining gene. Bioinformatics 22(9):1031–1035. doi: 10.1093/bioinformatics/btl022 CrossRefGoogle Scholar
  3. 3.
    Schou KB, Morthorst SK, Christensen ST, Pedersen H (2014) Identification of conserved, centrosome-targeting ASH domains in TRAPPII complex subunits and TRAPPC8. Cilia 3:6. doi: 10.1186/2046-2530-3-6 CrossRefPubMedCentralGoogle Scholar
  4. 4.
    Tarr DE, Scott AL (2005) MSP domain proteins. Trends Parasitol 21(5):224–231. doi: 10.1016/ CrossRefGoogle Scholar
  5. 5.
    Bork P, Holm L, Sander C (1994) The immunoglobulin fold. Structural classification, sequence patterns and common core. J Mol Biol 242(4):309–320. doi: 10.1006/jmbi.1994.1582 Google Scholar
  6. 6.
    Westlake CJ, Baye LM, Nachury MV, Wright KJ, Ervin KE, Phu L, Chalouni C, Beck JS, Kirkpatrick DS, Slusarski DC, Sheffield VC, Scheller RH, Jackson PK (2011) Primary cilia membrane assembly is initiated by Rab11 and transport protein particle II (TRAPPII) complex-dependent trafficking of Rabin8 to the centrosome. Proc Natl Acad Sci U S A 108(7):2759–2764. doi: 10.1073/pnas.1018823108 CrossRefPubMedCentralGoogle Scholar
  7. 7.
    Gillingham AK, Munro S (2000) The PACT domain, a conserved centrosomal targeting motif in the coiled-coil proteins AKAP450 and pericentrin. EMBO Rep 1(6):524–529. doi: 10.1093/embo-reports/kvd105 CrossRefPubMedCentralGoogle Scholar
  8. 8.
    Kishi K, van Vugt MA, Okamoto K, Hayashi Y, Yaffe MB (2009) Functional dynamics of Polo-like kinase 1 at the centrosome. Mol Cell Biol 29(11):3134–3150. doi: 10.1128/MCB.01663-08 CrossRefPubMedCentralGoogle Scholar
  9. 9.
    Januschke J, Reina J, Llamazares S, Bertran T, Rossi F, Roig J, Gonzalez C (2013) Centrobin controls mother-daughter centriole asymmetry in Drosophila neuroblasts. Nat Cell Biol 15(3):241–248. doi: 10.1038/ncb2671 CrossRefGoogle Scholar
  10. 10.
    Pazour GJ, Agrin N, Leszyk J, Witman GB (2005) Proteomic analysis of a eukaryotic cilium. J Cell Biol 170:103–113CrossRefPubMedCentralGoogle Scholar
  11. 11.
    Uhlen M, Fagerberg L, Hallstrom BM, Lindskog C, Oksvold P, Mardinoglu A, Sivertsson A, Kampf C, Sjostedt E, Asplund A, Olsson I, Edlund K, Lundberg E, Navani S, Szigyarto CA, Odeberg J, Djureinovic D, Takanen JO, Hober S, Alm T, Edqvist PH, Berling H, Tegel H, Mulder J, Rockberg J, Nilsson P, Schwenk JM, Hamsten M, von Feilitzen K, Forsberg M, Persson L, Johansson F, Zwahlen M, von Heijne G, Nielsen J, Ponten F (2015) Proteomics. Tissue-based map of the human proteome. Science 347(6220):1260419. doi: 10.1126/science.1260419 CrossRefGoogle Scholar
  12. 12.
    DiPetrillo CG, Smith EF (2010) Pcdp1 is a central apparatus protein that binds Ca(2+)-calmodulin and regulates ciliary motility. J Cell Biol 189(3):601–612. doi: 10.1083/jcb.200912009 CrossRefPubMedCentralGoogle Scholar
  13. 13.
    Brown JM, Dipetrillo CG, Smith EF, Witman GB (2012) A FAP46 mutant provides new insights into the function and assembly of the C1d complex of the ciliary central apparatus. J Cell Sci 125(Pt 16):3904–3913. doi: 10.1242/jcs.107151 CrossRefPubMedCentralGoogle Scholar
  14. 14.
    Lechtreck KF, Witman GB (2007) Chlamydomonas reinhardtii hydin is a central pair protein required for flagellar motility. J Cell Biol 176(4):473–482. doi: 10.1083/jcb.200611115 CrossRefPubMedCentralGoogle Scholar
  15. 15.
    Kee HL, Dishinger JF, Blasius TL, Liu CJ, Margolis B, Verhey KJ (2012) A size-exclusion permeability barrier and nucleoporins characterize a ciliary pore complex that regulates transport into cilia. Nat Cell Biol 14(4):431–437. doi: 10.1038/ncb2450 CrossRefPubMedCentralGoogle Scholar
  16. 16.
    Zhang D, Aravind L (2012) Novel transglutaminase-like peptidase and C2 domains elucidate the structure, biogenesis and evolution of the ciliary compartment. Cell Cycle 11(20):3861–3875. doi: 10.4161/cc.22068 CrossRefPubMedCentralGoogle Scholar
  17. 17.
    Sang L, Miller JJ, Corbit KC, Giles RH, Brauer MJ, Otto EA, Baye LM, Wen X, Scales SJ, Kwong M, Huntzicker EG, Sfakianos MK, Sandoval W, Bazan JF, Kulkarni P, Garcia-Gonzalo FR, Seol AD, O'Toole JF, Held S, Reutter HM, Lane WS, Rafiq MA, Noor A, Ansar M, Devi AR, Sheffield VC, Slusarski DC, Vincent JB, Doherty DA, Hildebrandt F, Reiter JF, Jackson PK (2011) Mapping the NPHP-JBTS-MKS Protein Network reveals ciliopathy disease genes and pathways. Cell 145(4):513–528. doi: 10.1016/j.cell.2011.04.019 CrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Patricia Verdier
    • 1
  • Stine K. Morthorst
    • 1
  • Lotte B. Pedersen
    • 1
    Email author
  1. 1.Department of BiologyUniversity of CopenhagenCopenhagen, OEDenmark

Personalised recommendations