Advertisement

Cilia pp 169-192 | Cite as

STED and STORM Superresolution Imaging of Primary Cilia

  • T. Tony Yang
  • Weng Man Chong
  • Jung-Chi LiaoEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1454)

Abstract

The characteristic lengths of molecular arrangement in primary cilia are below the diffraction limit of light, challenging structural and functional studies of ciliary proteins. Superresolution microscopy can reach up to a 20 nm resolution, significantly improving the ability to map molecules in primary cilia. Here we describe detailed experimental procedure of STED microscopy imaging and dSTORM imaging, two of the most powerful superresolution imaging techniques. Specifically, we emphasize the use of these two methods on imaging proteins in primary cilia.

Key words

Primary cilium Ciliary protein Superresolution microscopy Diffraction limit Fluorophore STED STORM 

Abbreviations

BaLM

Bleaching/blinking assisted localization microscopy (BaLM)

CW

Continuous wave (CW)

dSTORM

Direct stochastic optical reconstruction microscopy (dSTORM)

FPALM

Fluorescence photoactivation localization microscopy (FPALM)

GSD

Ground state depletion (GSD)

GSDIM

Ground state depletion microscopy followed by individual molecule return (GSDIM)

gSTED

Gated stimulated emission depletion (gSTED)

IFT

Intraflagellar transport (IFT)

PAINT

Point accumulation for imaging in nanoscale topography (PAINT)

PALM

Photoactivated localization microscopy (PALM)

PALMIRA

PALM with independently running acquisition (PALMIRA)

PSF

Point spread function (PSF)

RESOLFT

Reversible saturable optical fluorescence transitions (RESOLFT)

SIM

Structured illumination microscopy (SIM)

SOFI

Superresolution optical fluctuation imaging (SOFI)

SSIM

Saturated structured illumination microscopy (SSIM)

STED

Stimulated emission depletion (STED)

STORM

Stochastic optical reconstruction microscopy (STORM)

Notes

Acknowledgments

This work was supported by the Ministry of Science and Technology, Taiwan (Grant No. 103-2112-M-001-039-MY3), Academia Sinica Career Development Award, and Academia Sinica Nano Program.

References

  1. 1.
    Williams CL, Li C, Kida K, Inglis PN, Mohan S et al (2011) MKS and NPHP modules cooperate to establish basal body/transition zone membrane associations and ciliary gate function during ciliogenesis. J Cell Biol 192:1023–1041CrossRefPubMedCentralGoogle Scholar
  2. 2.
    Sang L, Miller JJ, Corbit KC, Giles RH, Brauer MJ et al (2011) Mapping the NPHP-JBTS-MKS protein network reveals ciliopathy disease genes and pathways. Cell 145:513–528CrossRefPubMedCentralGoogle Scholar
  3. 3.
    Garcia-Gonzalo FR, Corbit KC, Sirerol-Piquer MS, Ramaswami G, Otto EA et al (2011) A transition zone complex regulates mammalian ciliogenesis and ciliary membrane composition. Nat Genet 43:776–784CrossRefPubMedCentralGoogle Scholar
  4. 4.
    Chih B, Liu P, Chinn Y, Chalouni C, Komuves LG et al (2011) A ciliopathy complex at the transition zone protects the cilia as a privileged membrane domain. Nat Cell Biol 14:61–72CrossRefGoogle Scholar
  5. 5.
    Craige B, Tsao C-C, Diener DR, Hou Y, Lechtreck K-F et al (2010) CEP290 tethers flagellar transition zone microtubules to the membrane and regulates flagellar protein content. J Cell Biol 190:927–940CrossRefPubMedCentralGoogle Scholar
  6. 6.
    Tanos BE, Yang H-J, Soni R, Wang W-J, Macaluso FP et al (2013) Centriole distal appendages promote membrane docking, leading to cilia initiation. Genes Dev 27:163–168CrossRefPubMedCentralGoogle Scholar
  7. 7.
    Ye X, Zeng H, Ning G, Reiter JF, Liu A (2014) C2cd3 is critical for centriolar distal appendage assembly and ciliary vesicle docking in mammals. Proc Natl Acad Sci U S A 111:2164–2169CrossRefPubMedCentralGoogle Scholar
  8. 8.
    Burke MC, Li F-Q, Cyge B, Arashiro T, Brechbuhl HM et al (2014) Chibby promotes ciliary vesicle formation and basal body docking during airway cell differentiation. J Cell Biol 207:123–137CrossRefPubMedCentralGoogle Scholar
  9. 9.
    Yang TT, Hampilos PJ, Nathwani B, Miller CH, Sutaria ND et al (2013) Superresolution STED microscopy reveals differential localization in primary cilia. Cytoskeleton (Hoboken, NJ) 70:54–65CrossRefGoogle Scholar
  10. 10.
    Nathwani B, Yang TT, Liao J-C (2013) Towards a subdiffraction view of motor-mediated transport in primary cilia. Cell Mol Bioeng 6:82–97CrossRefGoogle Scholar
  11. 11.
    Dorn KV, Hughes CE, Rohatgi R (2012) A smoothened-Evc2 complex transduces the hedgehog signal at primary cilia. Dev Cell 23:823–835CrossRefPubMedCentralGoogle Scholar
  12. 12.
    Lau L, Lee YL, Sahl SJ, Stearns T, Moerner WE (2012) STED microscopy with optimized labeling density reveals 9-fold arrangement of a centriole protein. Biophys J 102:2926–2935CrossRefPubMedCentralGoogle Scholar
  13. 13.
    Hu Q, Milenkovic L, Jin H, Scott MP, Nachury MV et al (2010) A septin diffusion barrier at the base of the primary cilium maintains ciliary membrane protein distribution. Science 329:436–439CrossRefPubMedCentralGoogle Scholar
  14. 14.
    Sillibourne JE, Specht CG, Izeddin I, Hurbain I, Tran P et al (2011) Assessing the localization of centrosomal proteins by PALM/STORM nanoscopy. Cytoskeleton 68:619–627CrossRefGoogle Scholar
  15. 15.
    Kobayashi T, Kim S, Lin Y-C, Inoue T, Dynlacht BD (2014) The CP110-interacting proteins Talpid3 and Cep290 play overlapping and distinct roles in cilia assembly. J Cell Biol 204:215–229CrossRefPubMedCentralGoogle Scholar
  16. 16.
    Lu Q, Insinna C, Ott C, Stauffer J, Pintado PA et al (2015) Early steps in primary cilium assembly require EHD1/EHD3-dependent ciliary vesicle formation. Nat Cell Biol 17:228–240CrossRefPubMedCentralGoogle Scholar
  17. 17.
    Hell S, Wichmann J (1994) Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy. Opt Lett 19:780–782CrossRefGoogle Scholar
  18. 18.
    Klar TA, Jakobs S, Dyba M, Egner A, Hell SW (2000) Fluorescence microscopy with diffraction resolution barrier broken by stimulated emission. Proc Natl Acad Sci U S A 97:8206–8210CrossRefPubMedCentralGoogle Scholar
  19. 19.
    Gustafsson MGL (2000) Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy. J Microsc 198:82–87CrossRefGoogle Scholar
  20. 20.
    Hell SW (2003) Toward fluorescence nanoscopy. Nat Biotechnol 21:1347–1355CrossRefGoogle Scholar
  21. 21.
    Gustafsson MGL (2005) Nonlinear structured-illumination microscopy: wide-field fluorescence imaging with theoretically unlimited resolution. Proc Natl Acad Sci U S A 102:13081–13086CrossRefPubMedCentralGoogle Scholar
  22. 22.
    Betzig E, Patterson GH, Sougrat R, Lindwasser OW, Olenych S et al (2006) Imaging intracellular fluorescent proteins at nanometer resolution. Science 313:1642–1645CrossRefGoogle Scholar
  23. 23.
    Rust MJ, Bates M, Zhuang XW (2006) Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nat Methods 3:793–795CrossRefPubMedCentralGoogle Scholar
  24. 24.
    Hess ST, Girirajan TPK, Mason MD (2006) Ultra-high resolution imaging by fluorescence photoactivation localization microscopy. Biophys J 91:4258–4272CrossRefPubMedCentralGoogle Scholar
  25. 25.
    Sharonov A, Hochstrasser RM (2006) Wide-field subdiffraction imaging by accumulated binding of diffusing probes. Proc Natl Acad Sci 103:18911–18916CrossRefPubMedCentralGoogle Scholar
  26. 26.
    Bretschneider S, Eggeling C, Hell SW (2007) Breaking the diffraction barrier in fluorescence microscopy by optical shelving. Phys Rev Lett 98:218103CrossRefGoogle Scholar
  27. 27.
    Egner A, Geisler C, von Middendorff C, Bock H, Wenzel D et al (2007) Fluorescence nanoscopy in whole cells by asynchronous localization of photoswitching emitters. Biophys J 93:3285–3290CrossRefPubMedCentralGoogle Scholar
  28. 28.
    Heilemann M, van de Linde S, Schüttpelz M, Kasper R, Seefeldt B et al (2008) Subdiffraction-resolution fluorescence imaging with conventional fluorescent probes. Angew Chem Int Ed 47:6172–6176CrossRefGoogle Scholar
  29. 29.
    Folling J, Bossi M, Bock H, Medda R, Wurm CA et al (2008) Fluorescence nanoscopy by ground-state depletion and single-molecule return. Nat Methods 5:943–945CrossRefGoogle Scholar
  30. 30.
    Dertinger T, Colyer R, Iyer G, Weiss S, Enderlein J (2009) Fast, background-free, 3D super-resolution optical fluctuation imaging (SOFI). Proc Natl Acad Sci 106:22287–22292CrossRefPubMedCentralGoogle Scholar
  31. 31.
    Vicidomini G, Moneron G, Han KY, Westphal V, Ta H et al (2011) Sharper low-power STED nanoscopy by time gating. Nat Methods 8:571–573CrossRefGoogle Scholar
  32. 32.
    Burnette DT, Sengupta P, Dai Y, Lippincott-Schwartz J, Kachar B (2011) Bleaching/blinking assisted localization microscopy for superresolution imaging using standard fluorescent molecules. Proc Natl Acad Sci 108:21081–21086CrossRefPubMedCentralGoogle Scholar
  33. 33.
    Quan T, Zhu H, Liu X, Liu Y, Ding J et al (2011) High-density localization of active molecules using Structured Sparse Model and Bayesian Information Criterion. Opt Express 19:16963–16974CrossRefGoogle Scholar
  34. 34.
    Cox S, Rosten E, Monypenny J, Jovanovic-Talisman T, Burnette DT et al (2012) Bayesian localization microscopy reveals nanoscale podosome dynamics. Nat Methods 9:195–200CrossRefGoogle Scholar
  35. 35.
    Rittweger E, Han K, Irvine S, Eggeling C, Hell S (2009) STED microscopy reveals crystal colour centres with nanometric resolution. Nat Photon 3:144–147CrossRefGoogle Scholar
  36. 36.
    Willig K, Harke B, Medda R, Hell S (2007) STED microscopy with continuous wave beams. Nat Methods 4:915–918CrossRefGoogle Scholar
  37. 37.
    Meyer L, Wildanger D, Medda R, Punge A, Rizzoli SO et al (2008) Dual-color STED microscopy at 30-nm focal-plane resolution. Small 4:1095–1100CrossRefGoogle Scholar
  38. 38.
    Wildanger D, Medda R, Kastrup L, Hell SW (2009) A compact STED microscope providing 3D nanoscale resolution. J Microsc 236:35–43CrossRefGoogle Scholar
  39. 39.
    Moneron G, Hell SW (2009) Two-photon excitation STED microscopy. Opt Express 17:14567–14573CrossRefGoogle Scholar
  40. 40.
    Westphal V, Rizzoli S, Lauterbach M, Kamin D, Jahn R et al (2008) Video-rate far-field optical nanoscopy dissects synaptic vesicle movement. Science 320:246–249CrossRefGoogle Scholar
  41. 41.
    Pellett PA, Sun X, Gould TJ, Rothman JE, Xu M-Q et al (2011) Two-color STED microscopy in living cells. Biomed Opt Express 2:2364–2371CrossRefPubMedCentralGoogle Scholar
  42. 42.
    Keppler A, Gendreizig S, Gronemeyer T, Pick H, Vogel H et al (2003) A general method for the covalent labeling of fusion proteins with small molecules in vivo. Nat Biotechnol 21:86–89CrossRefGoogle Scholar
  43. 43.
    Los GV, Encell LP, McDougall MG, Hartzell DD, Karassina N et al (2008) HaloTag: a novel protein labeling technology for cell imaging and protein analysis. ACS Chem Biol 3:373–382CrossRefGoogle Scholar
  44. 44.
    Zhang M, Chang H, Zhang Y, Yu J, Wu L et al (2012) Rational design of true monomeric and bright photoactivatable fluorescent proteins. Nat Methods 9:727–729CrossRefGoogle Scholar
  45. 45.
    Wang S, Moffitt JR, Dempsey GT, Xie XS, Zhuang X (2014) Characterization and development of photoactivatable fluorescent proteins for single-molecule–based superresolution imaging. Proc Natl Acad Sci 111:8452–8457CrossRefPubMedCentralGoogle Scholar
  46. 46.
    Subach FV, Patterson GH, Manley S, Gillette JM, Lippincott-Schwartz J et al (2009) Photoactivatable mCherry for high-resolution two-color fluorescence microscopy. Nat Methods 6:153–159CrossRefPubMedCentralGoogle Scholar
  47. 47.
    Shroff H, Galbraith CG, Galbraith JA, White H, Gillette J et al (2007) Dual-color superresolution imaging of genetically expressed probes within individual adhesion complexes. Proc Natl Acad Sci 104:20308–20313CrossRefPubMedCentralGoogle Scholar
  48. 48.
    Dempsey GT, Vaughan JC, Chen KH, Bates M, Zhuang X (2011) Evaluation of fluorophores for optimal performance in localization-based super-resolution imaging. Nat Methods 8:1027–1036CrossRefPubMedCentralGoogle Scholar
  49. 49.
    Huang B, Jones SA, Brandenburg B, Zhuang X (2008) Whole-cell 3D STORM reveals interactions between cellular structures with nanometer-scale resolution. Nat Methods 5:1047–1052CrossRefPubMedCentralGoogle Scholar
  50. 50.
    Juette MF, Gould TJ, Lessard MD, Mlodzianoski MJ, Nagpure BS et al (2008) Three-dimensional sub-100 nm resolution fluorescence microscopy of thick samples. Nat Methods 5:527–529CrossRefGoogle Scholar
  51. 51.
    Pavani SRP, Thompson MA, Biteen JS, Lord SJ, Liu N et al (2009) Three-dimensional, single-molecule fluorescence imaging beyond the diffraction limit by using a double-helix point spread function. Proc Natl Acad Sci 106:2995–2999CrossRefPubMedCentralGoogle Scholar
  52. 52.
    Shtengel G, Galbraith JA, Galbraith CG, Lippincott-Schwartz J, Gillette JM et al (2009) Interferometric fluorescent super-resolution microscopy resolves 3D cellular ultrastructure. Proc Natl Acad Sci 106:3125–3130CrossRefPubMedCentralGoogle Scholar
  53. 53.
    Henriques R, Lelek M, Fornasiero EF, Valtorta F, Zimmer C et al (2010) QuickPALM: 3D real-time photoactivation nanoscopy image processing in ImageJ. Nat Methods 7:339–340CrossRefGoogle Scholar
  54. 54.
    Izeddin I, Boulanger J, Racine V, Specht CG, Kechkar A et al (2012) Wavelet analysis for single molecule localization microscopy. Opt Express 20:2081–2095CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Institute of Atomic and Molecular SciencesAcademia SinicaTaipeiTaiwan

Personalised recommendations