Advertisement

Cilia pp 149-168 | Cite as

Methods for Studying Ciliary-Mediated Chemoresponse in Paramecium

  • Megan Smith Valentine
  • Judith L. Van HoutenEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1454)

Abstract

Paramecium is a useful model organism for the study of ciliary-mediated chemical sensing and response. Here we describe ways to take advantage of Paramecium to study chemoresponse.

Unicellular organisms like the ciliated protozoan Paramecium sense and respond to chemicals in their environment (Van Houten, Ann Rev Physiol 54:639–663, 1992; Van Houten, Trends Neurosci 17:62–71, 1994). A thousand or more cilia that cover Paramecium cells serve as antennae for chemical signals, similar to ciliary function in a large variety of metazoan cell types that have primary or motile cilia (Berbari et al., Curr Biol 19(13):R526–R535, 2009; Singla V, Reiter J, Science 313:629–633, 2006). The Paramecium cilia also produce the motor output of the detection of chemical cues by controlling swimming behavior. Therefore, in Paramecium the cilia serve multiple roles of detection and response.

We present this chapter in three sections to describe the methods for (1) assaying populations of cells for their behavioral responses to chemicals (attraction and repulsion), (2) characterization of the chemoreceptors and associated channels of the cilia using proteomics and binding assays, and (3) electrophysiological analysis of individual cells’ responses to chemicals. These methods are applied to wild type cells, mutants, transformed cells that express tagged proteins, and cells depleted of gene products by RNA Interference (RNAi).

Key words

Paramecium T-Maze Chemoresponse Receptors Ciliary membrane Electrophysiology Deciliation 

References

  1. 1.
    Van Houten JL (1992) Chemoresponse in microorganisms. Ann Rev Physiol 54:639–663Google Scholar
  2. 2.
    Van Houten JL (1994) Chemoreception in microorganisms: trends for neuroscience? Trends Neurosci 17:62–71Google Scholar
  3. 3.
    Berbari NF, Oconnor AK, Haycraft CJ, Yoder BK (2009) The primary cilium as a complex signaling center. Curr Biol 19(13):R526–R535Google Scholar
  4. 4.
    Singla V, Reiter J (2006) The primary cilium as the cell’s antenna: signaling at a sensory organelle. Science 313:629–633Google Scholar
  5. 5.
    Van Houten J, Preston RR (1987) Chemoreception: Paramecium as a receptor cell. Adv Exp Med Biol 221:375–384Google Scholar
  6. 6.
    Van Houten J (1998) Chemosensory transduction in Paramecium. Eur J Protistol 34:301–307Google Scholar
  7. 7.
    Bell WE, Karstens W, Sun Y, Van Houten JL (1998) Biotin chemoresponse in Paramecium. J Comp Physiol A 183(3):361–366Google Scholar
  8. 8.
    Van Houten J (1979) Membrane potential changes during chemokinesis in Paramecium. Science 204(4397):1100–1103Google Scholar
  9. 9.
    Davis DP, Fiekers J, Van HOuten J (1998) Intracellular pH and chemoresponse to NH4+ in Paramecium. Cell Motil Cytoskeleton 40:107–118Google Scholar
  10. 10.
    Preston RR, Van Houten JL (1987) Chemoreception in Paramecium tetraurelia: acetate and folate-induced membrane hyperpolarization. J Comp Physiol A 160(4):525–535Google Scholar
  11. 11.
    Yang WQ, Braun C, Plattner H, Purvee J, Van Houten JL (1997) Cyclic nucleotides in glutamate chemosensory signal transduction of Paramecium. J Cell Sci 110(Pt 20):2567–2572Google Scholar
  12. 12.
    Van Houten JL (2000) Chemoreception in microorganisms. In: Finger T, Silver W, Restrepo D (eds) The neurobiology of taste and smell. Wiley-Liss, New York, NY, pp 11–40Google Scholar
  13. 13.
    Machemer H (1974) Frequency and directional responses of cilia to membrane potential changes in Paramecium. J Comp Physiol 92:293–316Google Scholar
  14. 14.
    Preston RR, Usherwood PN (1988) L-Glutamate-induced membrane hyperpolarization and behavioural responses in Paramecium tetraurelia. J Comp Physiol A 164(1):75–82Google Scholar
  15. 15.
    Bell WE, Preston RR, Yano J, Van Houten JL (2007) Genetic dissection of attractant-induced conductances in Paramecium. J Exp Biol 210(Pt 2):357–365Google Scholar
  16. 16.
    Dunlap K (1977) Localization of calcium channels in Paramecium caudatum. J Physiol 271(1):119–133Google Scholar
  17. 17.
    Capdeville Y, Benwakrim A (1996) The major ciliary membrane proteins in Paramecium primaurelia are all glycosylphosphatidylinositol-anchored proteins. Eur J Cell Biol 70(4):339–346Google Scholar
  18. 18.
    Paquette CA, Rakochy V, Bush A, Van Houten JL (2001) Glycophosphatidylinositol-anchored proteins in Paramecium tetraurelia: possible role in chemoresponse. J Exp Biol 204(Pt 16):2899–2910Google Scholar
  19. 19.
    Yano J, Rachochy V, Van Houten JL (2003) Glycosyl phosphatidylinositol-anchored proteins in chemosensory signaling: antisense manipulation of Paramecium tetraurelia PIG-A gene expression. Eukaryot Cell 2(6):1211–1219Google Scholar
  20. 20.
    Merkel SJ, Kaneshiro ES, Gruenstein EI (1981) Characterization of the cilia and ciliary membrane proteins of wild-type Paramecium tetraurelia and a pawn mutant. J Cell Biol 89(2):206–215Google Scholar
  21. 21.
    Kleene S, Van Houten JL (2014) Electrical signaling in motile and primary cilia. BioScience 64:1092–1102Google Scholar
  22. 22.
    Barrera NP, Robinson CV (2011) Advances in the mass spectrometry of membrane proteins: from individual proteins to intact complexes. Annu Rev Biochem 80:247–271Google Scholar
  23. 23.
    Van Houten JL (1977) A mutant of Paramecium defective in chemotaxis. Science 198:746–749Google Scholar
  24. 24.
    DiNallo MC, Wohlford M, Van Houten J (1982) Mutants of Paramecium defective in chemokinesis to folate. Genetics 102(2):149–158Google Scholar
  25. 25.
    Van Houten J, Martel E, Kasch T (1982) Kinetic analysis of chemokinesis of Paramecium. J Protozool 29(2):226–230Google Scholar
  26. 26.
    Romanovitch M (2012) The L-glutamate receptor in Paramecium tetraurelia. M.S. thesis, Department of Biology, University of Vermont, Burlington, VTGoogle Scholar
  27. 27.
    Weeraratne SD (2007) GPI receptors in folate chemosensor transduction in Paramecium tetraurelia. Ph.D. thesis, Department of Biology, University of Vermont, Burlington, VTGoogle Scholar
  28. 28.
    Jacobs CL (2007) NMDA receptor associated protein in Paramecium and it involvement in glutamate chemoresponse. M.S. thesis, Department of Biology, University of Vermont, Burlington, VTGoogle Scholar
  29. 29.
    Preston RR, Usherwood PNR (1988) Characterization of a specific L-[H-3]glutamic acid binding-site on cilia isolated from Paramecium tetraurelia. J Comp Physiol B 158(3):345–351Google Scholar
  30. 30.
    Czapla H (2012) Cyclic adenosine monophosphate receptors in Paramecium tetraurelia. M.S. thesis, Department of Biology, University of Vermont, Burlington, VTGoogle Scholar
  31. 31.
    Smith R, Preston RR, Schulz S, Gagnon ML, Van Houten J (1987) Correlations between cyclic AMP binding and chemoreception in Paramecium. Biochim Biophys Acta 928(2):171–178Google Scholar
  32. 32.
    Van Houten JL, Yang WQ, Bergeron A (2000) Chemosensory signal transduction in Paramecium. J Nutr 130(4S Suppl):946S–949SGoogle Scholar
  33. 33.
    Schulz S, Denaro M, Xypolyta-Bulloch A, Van Houten J (1984) The relationship of folate binding to chemoreception in Paramecium. J Comp Physiol A 155:113–119Google Scholar
  34. 34.
    Smith RA (1987) The association between external binding of cyclic AMP chemoattraction in Paramecium tetraurelia. M.S. thesis, Department of Biology, University of Vermont, Burlington, VTGoogle Scholar
  35. 35.
    Hansma HG (1979) Sodium uptake and membrane excitation in Paramecium. J Cell Biol 81(2):374–381Google Scholar
  36. 36.
    Machemer-Rohnisch S, Machemer H (1989) A Ca paradox: electric and behavioural responses of Paramecium following changes in external ion concentration. Eur J Protistol 25(1):45–59Google Scholar
  37. 37.
    Naitoh Y (1968) Ionic control of the reversal response of cilia in Paramecium caudatum. A calcium hypothesis. J Gen Physiol 51(1):85–103Google Scholar
  38. 38.
    Naitoh Y, Eckert R, Friedman K (1972) A regenerative calcium response in Paramecium. J Exp Biol 56(3):667–681Google Scholar
  39. 39.
    Preston RR (1990) A magnesium current in Paramecium. Science 250(4978):285–288Google Scholar
  40. 40.
    Preston RR, Van Houten JL (1987) Localization of the chemoreceptive properties of the surface membrane of Paramecium tetraurelia. J Comp Physiol A 160(4):537–541Google Scholar
  41. 41.
    Machemer H, Ogura A (1979) Ionic conductances of membranes in ciliated and deciliated Paramecium. J Physiol 296:49–60Google Scholar
  42. 42.
    Valentine MS (2015) Polycystin-2 (PKD2), Eccentric (XNTA), and Meckelin (MKS3) in the ciliated model organism Paramecium tetraurelia. Ph.D. dissertation, Department of Biology, University of Vermont, Burlington, VTGoogle Scholar
  43. 43.
    Oami K (1996) Distribution of chemoreceptors to quinine of the cell surface of Paramecium caudatum. J Comp Physiol A 179:345–352Google Scholar
  44. 44.
    Oami K (1998) Membrane potential response of Paramecium caudatum to bitter substances: existence of multiple pathways for bitter responses. J Exp Biol 201:13–20Google Scholar
  45. 45.
    Sasner J, Van Houten JL (1989) Evidence for a Paramecium folate chemoreceptor. Chem Senses 14:587–595Google Scholar
  46. 46.
    Yano J, Rajendran A, Valentine MS, Saha M, Ballif BA, Van Houten JL (2013) Proteomic analysis of the cilia membrane of Paramecium tetraurelia. J Proteomics 78:113–122Google Scholar
  47. 47.
    Adoutte A, Ramanathan R, Lewis RM, Dute RR, Ling KY, Kung C, Nelson DL (1980) Biochemical studies of the excitable membrane of Paramecium tetraurelia. III. Proteins of cilia and ciliary membranes. J Cell Biol 84(3):717–738Google Scholar
  48. 48.
    Schulz S, Denaro M, Xypolytabulloch A, Vanhouten J (1984) Relationship of folate binding to chemoreception in Paramecium. J Comp Physiol 155(1):113–119Google Scholar
  49. 49.
    Van Houten J, Yang W, Bergeron A (2000) Glutamate chemosensory signal transduction in Paramecium. J Nutr 130:946S–949SGoogle Scholar
  50. 50.
    Arnaiz O, Malinowska A, Klotz C, Sperling L, Dadlez M, Koll F, Cohen J (2009) Cildb: a knowledgebase for centrosomes and cilia. Database (Oxford) 2009:bap22Google Scholar
  51. 51.
    Qoronfleh MW, Benton B, Ignacio R, Kaboord B (2003) Selective enrichment of membrane proteins by partition phase separation for proteomic studies. J Biomed Biotechnol 2003(4):249–255Google Scholar
  52. 52.
    Preston RR, Kung C (1994) Inhibition of Mg2+ current by single-gene mutation in Paramecium. J Membr Biol 139(3):203–213Google Scholar
  53. 53.
    Haynes WJ, Kung C, Saimi Y, Preston RR (2002) An exchanger-like protein underlies the large Mg2+ current in Paramecium. Proc Natl Acad Sci U S A 99(24):15717–15722Google Scholar
  54. 54.
    Klotz I (1982) Number of receptor sites from Scatchard graphs: facts and fantasies. Science 217:1247–1249Google Scholar
  55. 55.
    Motulsky H, Christopoulos A (2005) Fitting models to biological data using linear and nonlinear regression: a practical guide to curve fitting. Oxford University Press, San Diego, CAGoogle Scholar
  56. 56.
    Van Houten J, Hansma H, Kung C (1975) Two quantitative assays for chemotaxis in Paramecium. J Comp Physiol 104:211–223Google Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Megan Smith Valentine
    • 1
  • Judith L. Van Houten
    • 1
    Email author
  1. 1.Department of BiologyThe University of VermontBurlingtonUSA

Personalised recommendations