Advertisement

Cilia pp 1-14 | Cite as

Methods for Studying Ciliary Import Mechanisms

  • Daisuke Takao
  • Kristen J. VerheyEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1454)

Abstract

Cilia and flagella are microtubule-based organelles that play important roles in human health by contributing to cellular motility as well as sensing and responding to environmental cues. Defects in cilia formation and function cause a broad class of human genetic diseases called ciliopathies. To carry out their specialized functions, cilia contain a unique complement of proteins that must be imported into the ciliary compartment. In this chapter, we describe methods to measure the permeability barrier of the ciliary gate by microinjection of fluorescent proteins and dextrans of different sizes into ciliated cells. We also describe a fluorescence recovery after photobleaching (FRAP) assay to measure the entry of ciliary proteins into the ciliary compartment. These assays can be used to determine the molecular mechanisms that regulate the formation and function of cilia in mammalian cells.

Key words

Cilia Nuclear import Ciliary import Microinjection FRAP 

Notes

Acknowledgments

We thank members of the Verhey Lab for advice and discussions. We are grateful to Steve Lentz and the Morphology and Image Analysis Core of the Michigan Diabetes Research and Training Center (funded by NIDDK under NIH5P60 DK20572) for help with confocal imaging. Work in K.J. Verhey Lab is supported by NIGMS of the NIH under award numbers R01GM070862 and R01GM116204.

References

  1. 1.
    Emmer BT, Maric D, Engman DM (2010) Molecular mechanisms of protein and lipid targeting to ciliary membranes. J Cell Sci 123:529–536CrossRefPubMedCentralGoogle Scholar
  2. 2.
    Madhivanan K, Aguilar RC (2014) Ciliopathies: the trafficking connection. Traffic 15:1031–1056CrossRefPubMedCentralGoogle Scholar
  3. 3.
    Nozawa YI, Lin C, Chuang PT (2013) Hedgehog signaling from the primary cilium to the nucleus: an emerging picture of ciliary localization, trafficking and transduction. Curr Opin Genet Dev 23:429–437CrossRefPubMedCentralGoogle Scholar
  4. 4.
    Mukhopadhyay S, Rohatgi R (2014) G-Protein-coupled receptors, Hedgehog signaling and primary cilia. Semin Cell Dev Biol 33:63–72CrossRefGoogle Scholar
  5. 5.
    Czarnecki PG, Shah JV (2012) The ciliary transition zone: from morphology and molecules to medicine. Trends Cell Biol 22:201–210CrossRefPubMedCentralGoogle Scholar
  6. 6.
    Garcia-Gonzalo FR, Reiter JF (2012) Scoring a backstage pass: mechanisms of ciliogenesis and ciliary access. J Cell Biol 197:697–709CrossRefPubMedCentralGoogle Scholar
  7. 7.
    Szymanska K, Johnson CA (2012) The transition zone: an essential functional compartment of cilia. Cilia 1:10CrossRefPubMedCentralGoogle Scholar
  8. 8.
    Craige B et al (2010) CEP290 tethers flagellar transition zone microtubules to the membrane and regulates flagellar protein content. J Cell Biol 190:927–940CrossRefPubMedCentralGoogle Scholar
  9. 9.
    Awata J et al (2014) Nephrocystin-4 controls ciliary trafficking of membrane and large soluble proteins at the transition zone. J Cell Sci 127(21):4714–4727CrossRefPubMedCentralGoogle Scholar
  10. 10.
    Breslow DK et al (2013) An in vitro assay for entry into cilia reveals unique properties of the soluble diffusion barrier. J Cell Biol 203:129–147CrossRefPubMedCentralGoogle Scholar
  11. 11.
    Lin YC et al (2013) Chemically inducible diffusion trap at cilia reveals molecular sieve-like barrier. Nat Chem Biol 9:437–443CrossRefGoogle Scholar
  12. 12.
    Battle C et al (2015) Intracellular and extracellular forces drive primary cilia movement. Proc Natl Acad Sci U S A 112:1410–1415CrossRefPubMedCentralGoogle Scholar
  13. 13.
    Besschetnova TY, Roy B, Shah JV (2009) Imaging intraflagellar transport in mammalian primary cilia. Methods Cell Biol 93:331–346CrossRefPubMedCentralGoogle Scholar
  14. 14.
    Ishikawa H, Marshall WF (2015) Efficient live fluorescence imaging of intraflagellar transport in mammalian primary cilia. Methods Cell Biol 127:189–201CrossRefGoogle Scholar
  15. 15.
    Kee HL et al (2012) A size-exclusion permeability barrier and nucleoporins characterize a ciliary pore complex that regulates transport into cilia. Nat Cell Biol 14:431–437CrossRefPubMedCentralGoogle Scholar
  16. 16.
    Mohieldin AM et al (2015) Protein composition and movements of membrane swellings associated with primary cilia. Cell Mol Life Sci 72:2415–2429CrossRefPubMedCentralGoogle Scholar
  17. 17.
    Williams CL et al (2014) Direct evidence for BBSome-associated intraflagellar transport reveals distinct properties of native mammalian cilia. Nat Commun 5:5813CrossRefPubMedCentralGoogle Scholar
  18. 18.
    Jenkins PM et al (2006) Ciliary targeting of olfactory CNG channels requires the CNGB1b subunit and the kinesin-2 motor protein, KIF17. Curr Biol 16:1211–1216CrossRefGoogle Scholar
  19. 19.
    Boehlke C et al (2010) Differential role of Rab proteins in ciliary trafficking: Rab23 regulates smoothened levels. J Cell Sci 123:1460–1467CrossRefGoogle Scholar
  20. 20.
    Dishinger JF et al (2010) Ciliary entry of the kinesin-2 motor KIF17 is regulated by importin-beta2 and RanGTP. Nat Cell Biol 12:703–710CrossRefPubMedCentralGoogle Scholar
  21. 21.
    Hu Q et al (2010) A septin diffusion barrier at the base of the primary cilium maintains ciliary membrane protein distribution. Science 329:436–439CrossRefPubMedCentralGoogle Scholar
  22. 22.
    Hurd TW et al (2010) The retinitis pigmentosa protein RP2 interacts with polycystin 2 and regulates cilia-mediated vertebrate development. Hum Mol Genet 19:4330–4344CrossRefPubMedCentralGoogle Scholar
  23. 23.
    Francis SS et al (2011) A hierarchy of signals regulates entry of membrane proteins into the ciliary membrane domain in epithelial cells. J Cell Biol 193:219–233CrossRefPubMedCentralGoogle Scholar
  24. 24.
    Hao L et al (2011) Intraflagellar transport delivers tubulin isotypes to sensory cilium middle and distal segments. Nat Cell Biol 13:790–798CrossRefPubMedCentralGoogle Scholar
  25. 25.
    Larkins CE et al (2011) Arl13b regulates ciliogenesis and the dynamic localization of Shh signaling proteins. Mol Biol Cell 22:4694–4703CrossRefPubMedCentralGoogle Scholar
  26. 26.
    Chih B et al (2012) A ciliopathy complex at the transition zone protects the cilia as a privileged membrane domain. Nat Cell Biol 14:61–72CrossRefGoogle Scholar
  27. 27.
    Ye F et al (2013) Single molecule imaging reveals a major role for diffusion in the exploration of ciliary space by signaling receptors. Elife 2, e00654CrossRefPubMedCentralGoogle Scholar
  28. 28.
    Liew GM et al (2014) The intraflagellar transport protein IFT27 promotes BBSome exit from cilia through the GTPase ARL6/BBS3. Dev Cell 31:265–278CrossRefPubMedCentralGoogle Scholar
  29. 29.
    Takao D et al (2014) An assay for clogging the ciliary pore complex distinguishes mechanisms of cytosolic and membrane protein entry. Curr Biol 24:2288–2294CrossRefPubMedCentralGoogle Scholar
  30. 30.
    Caspary T, Larkins CE, Anderson KV (2007) The graded response to Sonic Hedgehog depends on cilia architecture. Dev Cell 12:767–778CrossRefGoogle Scholar
  31. 31.
    Cevik S et al (2010) Joubert syndrome Arl13b functions at ciliary membranes and stabilizes protein transport in Caenorhabditis elegans. J Cell Biol 188:953–969CrossRefPubMedCentralGoogle Scholar
  32. 32.
    Hori Y et al (2008) Domain architecture of the atypical Arf-family GTPase Arl13b involved in cilia formation. Biochem Biophys Res Commun 373:119–124CrossRefGoogle Scholar
  33. 33.
    Berbari NF et al (2008) Bardet-Biedl syndrome proteins are required for the localization of G protein-coupled receptors to primary cilia. Proc Natl Acad Sci U S A 105:4242–4246CrossRefPubMedCentralGoogle Scholar
  34. 34.
    Brailov I et al (2000) Localization of 5-HT(6) receptors at the plasma membrane of neuronal cilia in the rat brain. Brain Res 872:271–275CrossRefGoogle Scholar
  35. 35.
    Handel M et al (1999) Selective targeting of somatostatin receptor 3 to neuronal cilia. Neuroscience 89:909–926CrossRefGoogle Scholar
  36. 36.
    Kee HL, Verhey KJ (2013) Molecular connections between nuclear and ciliary import processes. Cilia 2:11CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Department of Cell and Developmental BiologyUniversity of Michigan Medical SchoolAnn ArborUSA

Personalised recommendations