Advertisement

Isolation and Culture of Neural Crest Stem Cells from Human Hair Follicles

  • Ruifeng Yang
  • Xiaowei XuEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1453)

Abstract

The hair follicle undergoes lifelong cycling and growth. Previous studies have been focused on epithelial stem cells in the hair follicles. Neural crest stem cells (NCSCs) are pluripotent cells that can persist in adult tissues. We have previously demonstrated that human NCSCs can be isolated from hair follicles. Here, we present a protocol to isolate NCSCs from human hair follicles based on their specific surface-marker expression of CD271/HNK1 or CD271/CD49D (alpha4 integrin). NCSCs can be expanded in the culture as neural spheres or attached cells.

Key words

Protocol Neural crest stem cells Hair follicle Bulge 

Notes

Acknowledgments

This work was supported by NIH grants R01AR054593 and R01AR054593-S1 to X. Xu.

References

  1. 1.
    Cotsarelis G, Cheng SZ, Dong G, Sun TT, Lavker RM (1989) Existence of slow-cycling limbal epithelial basal cells that can be preferentially stimulated to proliferate: implications on epithelial stem cells. Cell 57:201–209CrossRefPubMedGoogle Scholar
  2. 2.
    Cotsarelis G, Sun TT, Lavker RM (1990) Label-retaining cells reside in the bulge area of pilosebaceous unit: implications for follicular stem cells, hair cycle, and skin carcinogenesis. Cell 61:1329–1337CrossRefPubMedGoogle Scholar
  3. 3.
    Tanimura S et al (2011) Hair follicle stem cells provide a functional niche for melanocyte stem cells. Cell Stem Cell 8:177–187CrossRefPubMedGoogle Scholar
  4. 4.
    Yu H et al (2006) Isolation of a novel population of multipotent adult stem cells from human hair follicles. Am J Pathol 168:1879–1888CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Yu H, Kumar SM, Kossenkov AV, Showe L, Xu X (2010) Stem cells with neural crest characteristics derived from the bulge region of cultured human hair follicles. J Invest Dermatol 130:1227–1236CrossRefPubMedGoogle Scholar
  6. 6.
    Wong CE et al (2006) Neural crest-derived cells with stem cell features can be traced back to multiple lineages in the adult skin. J Cell Biol 175:1005–1015CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Sieber-Blum M, Grim M, Hu YF, Szeder V (2004) Pluripotent neural crest stem cells in the adult hair follicle. Dev Dyn 231:258–269CrossRefPubMedGoogle Scholar
  8. 8.
    Li L, Mignone J, Yang M, Matic M, Penman S, Enikolopov G, Hoffman RM (2003) Nestin expression in hair follicle sheath progenitor cells. Proc Natl Acad Sci U S A 100:9958–9961CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Amoh Y, Li L, Katsuoka K, Hoffman RM (2008) Multipotent hair follicle stem cells promote repair of spinal cord injury and recovery of walking function. Cell Cycle 7:1865–1869Google Scholar
  10. 10.
    Amoh Y et al (2005) Implanted hair follicle stem cells form Schwann cells that support repair of severed peripheral nerves. Proc Natl Acad Sci U S A 102:17734–17738CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    McKenzie IA, Biernaskie J, Toma JG, Midha R, Miller FD (2006) Skin-derived precursors generate myelinating Schwann cells for the injured and dysmyelinated nervous system. J Neurosci 26:6651–6660CrossRefPubMedGoogle Scholar
  12. 12.
    Amoh Y, Li L, Katsuoka K, Penman S, Hoffman RM (2005) Multipotent nestin-positive, keratin-negative hair-follicle-bulge stem cells can form neurons. Proc Natl Acad Sci U S A 102:5530–5534CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Amoh Y, Kanoh M, Niiyama S, Hamada Y, Kawahara K, Sato Y, Hoffman RM, Katsuoka K (2009) Human hair follicle pluripotent stem (hfPS) cells promote regeneration of peripheral-nerve injury: an advantageous alternative to ES and iPS cells. J Cell Biochem 107:1016–1020CrossRefPubMedGoogle Scholar
  14. 14.
    Liu F, Uchugonova A, Kimura H, Zhang C, Zhao M, Zhang L, Koenig K, Duong J, Aki R, Saito N, Mii S, Amoh Y, Katsuoka K, Hoffman RM (2011) The bulge area is the major hair follicle source of nestin-expressing pluripotent stem cells which can repair the spinal cord compared to the dermal papilla. Cell Cycle 10:830–839CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Department of Pathology and Laboratory MedicineUniversity of Pennsylvania School of MedicinePhiladelphiaUSA

Personalised recommendations