Advertisement

Peripheral-Nerve and Spinal-Cord Regeneration in Mice Using Hair-Follicle-Associated Pluripotent (HAP) Stem Cells

  • Yasuyuki Amoh
  • Kensei Katsuoka
  • Robert M. HoffmanEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1453)

Abstract

Nestin, a neural stem cell marker protein, is expressed in hair follicle cells above the bulge area. These nestin-positive hair follicle-associated-pluripotent (HAP) stem cells are negative for the keratinocyte marker K15 and can differentiate into neurons, glia, keratinocytes, smooth muscle cells, cardiac muscle cells, and melanocytes in vitro. HAP stem cells are positive for the stem cell marker CD34, as well as K15-negative, suggesting their relatively undifferentiated state. HAP stem cells promoted the functional recovery of injured peripheral nerves and the spinal cord. HAP stem cells differentiated into glial fibrillary acidic protein (GFAP)-positive Schwann cells when implanted in severed sciatic nerves and spinal cords in mice. These results suggest that HAP stem cells provide an important accessible, autologous source of adult stem cells for regenerative medicine, that have critical advantages over ES and iPS stem cells.

Key words

Hair follicle Bulge area Nestin Stem cell Pluripotent Differentiation Nerve Spinal cord Repair 

References

  1. 1.
    Li L, Mignone J, Yang M, Matic M, Penman S, Enikolopov G et al (2003) Nestin expression in hair follicle sheath progenitor cells. Proc Natl Acad Sci U S A 100:9958–9961CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Amoh Y, Li L, Yang M, Moossa AR, Katsuoka K, Penman S et al (2004) Nascent blood vessels in the skin arise from nestin-expressing hair follicle cells. Proc Natl Acad Sci U S A 101:13291–13295CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Amoh Y, Li L, Katsuoka K, Penman S, Hoffman RM (2005) Multipotent nestin-positive, keratin-negative hair-follicle-bulge stem cells can form neurons. Proc Natl Acad Sci U S A 102:5530–5534CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Amoh Y, Li L, Katsuoka K, Hoffman RM (2007) Chemotherapy targets the hair-follicle vascular network but not the stem cells. J Invest Dermatol 127:11–15CrossRefPubMedGoogle Scholar
  5. 5.
    Yashiro M, Mii S, Aki R, Hamada Y, Arakawa N, Kawahara K et al (2015) From hair to heart: nestin-expressing hair-follicle-associated pluripotent (HAP) stem cells differentiate to beating cardiac muscle cells. Cell Cycle 14:2362–2366CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Hoffman RM (2014) Nestin-expressing hair follicle-accessible-pluripotent (HAP) stem cells for nerve and spinal cord repair. Cells Tissues Organs 200:42–47CrossRefPubMedGoogle Scholar
  7. 7.
    Amoh Y, Li L, Campillo R, Kawahara K, Katsuoka K, Penman S et al (2005) Implanted hair follicle stem cells form Schwann cells that support repair of severed peripheral nerves. Proc Natl Acad Sci U S A 102:17734–17738CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Amoh Y, Li L, Katsuoka K, Hoffman RM (2008) Multipotent hair follicle stem cells promote repair of spinal cord injury and recovery of walking function. Cell Cycle 7:1865–1869CrossRefPubMedGoogle Scholar
  9. 9.
    Amoh Y, Kanoh M, Niiyama S, Hamada Y, Kawahara K, Sato Y et al (2009) Human hair follicle multipotent stem (hfPS) cells promote regeneration of peripheral-nerve injury: An advantageous alternative to ES and iPS cells. J Cell Biochem 107:1016–1020CrossRefPubMedGoogle Scholar
  10. 10.
    Amoh Y, Hamada Y, Aki R, Kawahara K, Hoffman RM, Katsuoka K (2010) Direct transplantation of uncultured hair-follicle multipotent stem (hfPS) cells promotes the recovery of peripheral nerve injury. J Cell Biochem 110:272–277PubMedGoogle Scholar
  11. 11.
    Liu F, Uchugonova A, Kimura H, Zhang C, Zhao M, Zhang L et al (2011) The bulge area is the major hair follicle source of nestin-expressing multipotent stem cells which can repair the spinal cord compared to the dermal papilla. Cell Cycle 10:830–839CrossRefPubMedGoogle Scholar
  12. 12.
    Mii S, Duong J, Tome Y, Uchugonova A, Liu F, Amoh Y et al (2013) The role of hair follicle nestin-expressing stem cells during whisker sensory-nerve growth in long-term 3D culture. J Cell Biochem 114:1674–1684CrossRefPubMedGoogle Scholar
  13. 13.
    Kajiura S, Mii S, Aki R, Hamada Y, Arakawa N, Kawahara K et al (2015) Cryopreservation of the hair follicle maintains pluripotency of nestin-expressing hair follicle-associated pluripotent stem cells. Tissue Eng Part C Methods 21:825–831CrossRefPubMedGoogle Scholar
  14. 14.
    Yamauchi K, Yang M, Jiang P, Xu M, Yamamoto N, Tsuchiya H et al (2006) Development of real-time subcellular dynamic multicolor imaging of cancer-cell trafficking in live mice with a variable-magnification whole-mouse imaging system. Cancer Res 66:4208–4214CrossRefPubMedGoogle Scholar
  15. 15.
    Amoh Y, Mii S, Aki R, Hamada Y, Kawahara K, Hoffman RM et al (2012) Multipotent nestin-expressing stem cells capable of forming neurons are located in the upper, middle and lower part of the vibrissa hair follicle. Cell Cycle 11:3513–3517CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Amoh Y, Kanoh M, Niiyama S, Kawahara K, Satoh Y, Katsuoka K et al (2009) Human and mouse hair follicles contain both multipotent and monopotent stem cells. Cell Cycle 8:176–177CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Yasuyuki Amoh
    • 1
    • 2
    • 3
  • Kensei Katsuoka
    • 1
  • Robert M. Hoffman
    • 2
    • 3
    Email author
  1. 1.Department of DermatologyKitasato University School of MedicineSagamiharaJapan
  2. 2.AntiCancer, Inc.San DiegoUSA
  3. 3.Department of SurgeryUniversity of California, San DiegoSan DiegoUSA

Personalised recommendations