Advertisement

Introduction to Hair-Follicle-Associated Pluripotent Stem Cells

  • Robert M. HoffmanEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1453)

Abstract

Nestin-expressing stem cells of the hair follicle, discovered by our laboratory, have been shown to be able to form outer-root sheaths of the follicle as well as neurons and many other non-follicle cell types. We have termed the nestin-expressing stem cells of the hair follicle as hair-follicle-associated pluripotent (HAP) stem cells. We have shown that the HAP stem cells from the hair follicle can effect the repair of peripheral nerve and spinal cord injury. The hair follicle stem cells differentiate into neuronal and glial cells after transplantation to the injured peripheral nerve and spinal cord, and enhance injury repair and locomotor recovery. When the excised hair follicle with its nerve stump was placed in Gelfoam® 3D histoculture, HAP stem cells grew and extended the hair follicle nerve which consisted of βIII-tubulin-positive fibers with F-actin expression at the tip. These findings indicate that βIII-tubulin-positive fibers elongating from the whisker follicle sensory nerve stump were growing axons. The growing whisker sensory nerve was highly enriched in HAP stem cells, which appeared to play a major role in its elongation and interaction with other nerves in 3D Gelfoam® histoculture, including the sciatic nerve, the trigeminal nerve, and the trigeminal nerve ganglion. These results suggest that a major function of the HAP stem cells in the hair follicle is for growth of the follicle sensory nerve. Recently, we have shown that HAP stem cells can differentiate into beating cardiac muscle cells. HAP stem cells have critical advantages for regenerative medicine over embryonic stem (ES) cells and induced pluripotent stem (iPS) cells in that they are highly accessible from each patient, thereby eliminating immunological issues since they are autologous, require no genetic manipulation, are non-tumorigenic, and do not present ethical issues.

Key words

Hair follicle Bulge Nestin Pluripotent Stem cells GFP Neurons Schwann cells Sciatic nerve Spinal cord repair Cardiac muscle cells 

References

  1. 1.
    Li L, Mignone J, Yang M, Matic M, Penman S, Enikolopov G et al (2003) Nestin expression in hair follicle sheath progenitor cells. Proc Natl Acad Sci U S A 100:9958–9961CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Mignone JL, Roig-Lopez JL, Fedtsova N, Schones DE, Manganas LN, Maletic-Savatic M et al (2007) Neural potential of a stem cell population in the hair follicle. Cell Cycle 6:2161–2170CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Yu H, Fang D, Kumar SM, Li L, Nguyen TK, Acs G et al (2006) Isolation of a novel population of multipotent adult stem cells from human hair follicles. Am J Pathol 168:1879–1888CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Morris RJ, Liu Y, Marles L, Yang Z, Trempus C, Li S et al (2004) Capturing and profiling adult hair follicle stem cells. Nat Biotechnol 22:411–417CrossRefPubMedGoogle Scholar
  5. 5.
    Tumbar T, Guasch G, Greco V, Blanpain C, Lowry WE, Rendl M et al (2004) Defining the epithelial stem cell niche in skin. Science 303:359–363CrossRefPubMedGoogle Scholar
  6. 6.
    Rhee H, Polak L, Fuchs E (2006) Lhx2 maintains stem cell character in hair follicles. Science 312:1946–1949CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Amoh Y, Li L, Katsuoka K, Penman S, Hoffman RM (2005) Multipotent nestin-positive, keratin-negative hair-follicle-bulge stem cells can form neurons. Proc Natl Acad Sci U S A 102:5530–5534CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Amoh Y, Kanoh M, Niiyama S, Kawahara K, Satoh Y, Katsuoka K et al (2009) Human and mouse hair follicles contain both multipotent and monopotent stem cells. Cell Cycle 8:176–177CrossRefPubMedGoogle Scholar
  9. 9.
    Hoffman RM (2006) The pluripotency of hair follicle stem cells. Cell Cycle 5:232–233CrossRefPubMedGoogle Scholar
  10. 10.
    Yashiro M, Mii S, Aki R, Hamada Y, Arakawa N, Kawahara K et al (2015) From hair to heart: nestin-expressing hair-follicle-associated pluripotent (HAP) stem cells differentiate to beating cardiac muscle cells. Cell Cycle 14:2362–2366CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Sieber-Blum M, Grim M, Hu YF, Szeder V (2004) Multipotent neural crest stem cells in the adult hair follicle. Dev Dyn 231:258–269CrossRefPubMedGoogle Scholar
  12. 12.
    Sieber-Blum M, Schnell L, Grim M, Hu YF, Schneider R, Schwab ME (2006) Characterization of epidermal neural crest stem cell (EPI-NCSC) grafts in the lesioned spinal cord. Mol Cell Neurosci 32:67–81CrossRefPubMedGoogle Scholar
  13. 13.
    Biernaskie J, Paris M, Morozova O, Fagan BM, Marra M, Pevny L et al (2009) SKPs derive from hair follicle precursors and exhibit properties of adult dermal stem cells. Cell Stem Cell 5:610–623CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Amoh Y, Li L, Yang M, Moossa AR, Katsuoka K, Penman S et al (2004) Nascent blood vessels in the skin arise from nestin-expressing hair follicle cells. Proc Natl Acad Sci U S A 101:13291–13295CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Amoh Y, Li L, Katsuoka K, Hoffman RM (2008) Multipotent hair follicle stem cells promote repair of spinal cord injury and recovery of walking function. Cell Cycle 7:1865–1869CrossRefPubMedGoogle Scholar
  16. 16.
    Amoh Y, Kanoh M, Niiyama S, Hamada Y, Kawahara K, Sato Y et al (2009) Human hair follicle multipotent stem (hfPS) cells promote regeneration of peripheral-nerve injury: an advantageous alternative to ES and iPS cells. J Cell Biochem 107:1016–1020CrossRefPubMedGoogle Scholar
  17. 17.
    Amoh Y, Hamada Y, Aki R, Kawahara K, Hoffman RM, Katsuoka K (2010) Direct transplantation of uncultured hair-follicle multipotent stem (hfPS) cells promotes the recovery of peripheral nerve injury. J Cell Biochem 110:272–277PubMedGoogle Scholar
  18. 18.
    Li L, Margolis LB, Hoffman RM (1991) Skin toxicity determined in vitro by three-dimensional, native-state histoculture. Proc Natl Acad Sci U S A 88:1908–1912CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Yu H, Kumar SM, Kossenkov AV, Showe L, Xu X (2010) Stem cells with neural crest characteristics derived from the bulge region of cultured human hair follicles. J Invest Dermatol 130:1227–1236CrossRefPubMedGoogle Scholar
  20. 20.
    Amoh Y, Li L, Campillo R, Kawahara K, Katsuoka K, Penman S et al (2005) Implanted hair follicle stem cells form Schwann cells that support repair of severed peripheral nerves. Proc Natl Acad Sci U S A 102:17734–17738CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Liu F, Uchugonova A, Kimura H, Zhang C, Zhao M, Zhang L et al (2011) The bulge area is the major hair follicle source of nestin-expressing multipotent stem cells which can repair the spinal cord compared to the dermal papilla. Cell Cycle 10:830–839CrossRefPubMedGoogle Scholar
  22. 22.
    Uchugonova A, Duong J, Zhang N, König K, Hoffman RM (2011) The bulge area is the origin of nestin-expressing multipotent stem cells of the hair follicle. J Cell Biochem 112:2046–2050CrossRefPubMedGoogle Scholar
  23. 23.
    Uchugonova A, Hoffman RM, Weinigel M, Koenig K (2011) Watching stem cells in the skin of living mice noninvasively. Cell Cycle 10:2017–2020CrossRefPubMedGoogle Scholar
  24. 24.
    Duong J, Mii S, Uchugonova A, Liu F, Moossa AR, Hoffman RM (2012) Real-time confocal imaging of trafficking of nestin-expressing multipotent stem cells in mouse whiskers in long-term 3-D histoculture. In Vitro Cell Dev Biol Anim 48:301–305CrossRefPubMedGoogle Scholar
  25. 25.
    Liu F, Zhang C, Hoffman RM (2014) Nestin-expressing stem cells from the hair follicle can differentiate into motor neurons and reduce muscle atrophy after transplantation to injured nerves. Tissue Eng 20:656–662Google Scholar
  26. 26.
    Mii S, Duong J, Tome Y, Uchugonova A, Liu F, Amoh Y et al (2013) The role of hair follicle nestin-expressing stem cells during whisker sensory-nerve growth in long-term 3D culture. J Cell Biochem 114:1674–1684CrossRefPubMedGoogle Scholar
  27. 27.
    Okano H, Nakamura M, Yoshida K, Okada Y, Tsuji O, Nori S et al (2013) Steps toward safe cell therapy using induced pluripotent stem cells. Circ Res 112:523–533CrossRefPubMedGoogle Scholar
  28. 28.
    Nori S, Okada Y, Yasuda A, Tsuji O, Takahashi Y, Kobayashi Y et al (2011) Grafted human-induced pluripotent stem-cell-derived neurospheres promote motor functional recovery after spinal cord injury in mice. Proc Natl Acad Sci U S A 108:16825–16830CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Keirstead HS, Nistor G, Bernal G, Totoiu M, Cloutier F, Sharp K et al (2005) Human embryonic stem cell-derived oligodendrocyte progenitor cell transplants remyelinate and restore locomotion after spinal cord injury. J Neurosci 25:4694–4705CrossRefPubMedGoogle Scholar
  30. 30.
    Sakaue M, Sieber-Blum M (2015) Human epidermal neural crest stem cells as a source of Schwann cells. Development 142:3188–3197CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Mii S, Amoh Y, Katsuoka K, Hoffman RM (2014) Comparison of nestin-expressing multipotent stem cells in the tongue fungiform papilla and vibrissa hair follicle. J Cell Biochem 115:1070–1076CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.AntiCancer, Inc.San DiegoUSA
  2. 2.Department of SurgeryUniversity of California, San DiegoSan DiegoUSA

Personalised recommendations