Skip to main content
Book cover

Zebrafish pp 355–366Cite as

Genetic Ablation, Sensitization, and Isolation of Neurons Using Nitroreductase and Tetrodotoxin-Insensitive Channels

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1451))

Abstract

Advances in genetic technologies enable the highly selective expression of transgenes in targeted neuronal cell types. Transgene expression can be used to noninvasively ablate, silence or activate neurons, providing a tool to probe their contribution to the control of behavior or physiology. Here, we describe the use of the tetrodotoxin (TTX)-resistant voltage-gated sodium channel Nav1.5 for either sensitizing neurons to depolarizing input, or isolating targeted neurons from surrounding neural activity, and methods for selective neuronal ablation using the bacterial nitroreductase NfsB.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Asakawa K, Suster ML, Mizusawa K, Nagayoshi S, Kotani T, Urasaki A, Kishimoto Y, Hibi M, Kawakami K (2008) Genetic dissection of neural circuits by Tol2 transposon-mediated Gal4 gene and enhancer trapping in zebrafish. Proc Natl Acad Sci U S A 105(4):1255–1260. doi:10.1073/pnas.0704963105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Plazas PV, Nicol X, Spitzer NC (2013) Activity-dependent competition regulates motor neuron axon pathfinding via PlexinA3. Proc Natl Acad Sci U S A 110(4):1524–1529, doi: 1213048110 [pii] 10.1073/pnas.1213048110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Szobota S, Gorostiza P, Del Bene F, Wyart C, Fortin DL, Kolstad KD, Tulyathan O, Volgraf M, Numano R, Aaron HL, Scott EK, Kramer RH, Flannery J, Baier H, Trauner D, Isacoff EY (2007) Remote control of neuronal activity with a light-gated glutamate receptor. Neuron 54(4):535–545, doi: S0896-6273(07)00344-3 [pii] 10.1016/j.neuron.2007.05.010

    Article  CAS  PubMed  Google Scholar 

  4. Arrenberg AB, Del Bene F, Baier H (2009) Optical control of zebrafish behavior with halorhodopsin. Proc Natl Acad Sci U S A 106(42):17968–17973, doi: 0906252106 [pii] 10.1073/pnas.0906252106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Bergeron SA, Carrier N, Li GH, Ahn S, Burgess HA (2014) Gsx1 expression defines neurons required for prepulse inhibition. Mol Psychiatry. doi: 10.1038/mp.2014.106

    Google Scholar 

  6. Wan H, Korzh S, Li Z, Mudumana SP, Korzh V, Jiang YJ, Lin S, Gong Z (2006) Analyses of pancreas development by generation of gfp transgenic zebrafish using an exocrine pancreas-specific elastaseA gene promoter. Exp Cell Res 312(9):1526–1539, doi: S0014-4827(06)00019-X [pii] 10.1016/j.yexcr.2006.01.016

    Article  CAS  PubMed  Google Scholar 

  7. Slanchev K, Stebler J, de la Cueva-Mendez G, Raz E (2005) Development without germ cells: the role of the germ line in zebrafish sex differentiation. Proc Natl Acad Sci U S A 102(11):4074–4079, doi: 0407475102 [pii] 10.1073/pnas.0407475102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Chu Y, Senghaas N, Koster RW, Wurst W, Kuhn R (2008) Novel caspase-suicide proteins for tamoxifen-inducible apoptosis. Genesis 46(10):530–536. doi:10.1002/dvg.20426

    Article  CAS  PubMed  Google Scholar 

  9. Pisharath H, Rhee JM, Swanson MA, Leach SD, Parsons MJ (2007) Targeted ablation of beta cells in the embryonic zebrafish pancreas using E. coli nitroreductase. Mech Dev 124(3):218–229

    Article  CAS  PubMed  Google Scholar 

  10. Curado S, Anderson RM, Jungblut B, Mumm J, Schroeter E, Stainier DY (2007) Conditional targeted cell ablation in zebrafish: a new tool for regeneration studies. Dev Dyn 236(4):1025–1035

    Article  CAS  PubMed  Google Scholar 

  11. Curado S, Stainier DYR, Anderson RM (2008) Nitroreductase-mediated cell/tissue ablation in zebrafish: a spatially and temporally controlled ablation method with applications in developmental and regeneration studies. Nat Protocols 3(6):948–954

    Article  CAS  PubMed  Google Scholar 

  12. Mathias JR, Zhang Z, Saxena MT, Mumm JS (2014) Enhanced cell-specific ablation in zebrafish using a triple mutant of Escherichia coli nitroreductase. Zebrafish. doi:10.1089/zeb.2013.0937

    PubMed  PubMed Central  Google Scholar 

  13. Tabor KM, Bergeron SA, Horstick EJ, Jordan DC, Aho V, Porkka-Heiskanen T, Haspel G, Burgess HA (2014) Direct activation of the Mauthner cell by electric field pulses drives ultra-rapid escape responses. J Neurophysiol 112(4):834–844. doi:10.1152/jn.00228.2014

    Article  PubMed  PubMed Central  Google Scholar 

  14. Yokogawa T, Hannan MC, Burgess HA (2012) The dorsal raphe modulates sensory responsiveness during arousal in zebrafish. J Neurosci 32:15205–15215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Douglass AD, Kraves S, Deisseroth K, Schier AF, Engert F (2008) Escape behavior elicited by single, channelrhodopsin-2-evoked spikes in zebrafish somatosensory neurons. Curr Biol 18(15):1133–1137

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Zhu P, Narita Y, Bundschuh ST, Fajardo O, Zhang Schärer Y-P, Chattopadhyaya B, Arn Bouldoires E, Stepien AE, Deisseroth K, Arber S, Sprengel R, Rijli FM, Friedrich RW (2009) Optogenetic dissection of neuronal circuits in zebrafish using viral gene transfer and the Tet system. Front Neural Circ 3:21. doi:10.3389/neuro.04.021.2009

    Google Scholar 

  17. Kubo F, Hablitzel B, Dal Maschio M, Driever W, Baier H, Arrenberg AB (2014) Functional architecture of an optic flow-responsive area that drives horizontal eye movements in zebrafish. Neuron 81(6):1344–1359, doi:S0896-6273(14)00193-7 [pii] 10.1016/j.neuron.2014.02.043

    Article  CAS  PubMed  Google Scholar 

  18. Deschenes I, Trottier E, Chahine M (2001) Implication of the C-terminal region of the alpha-subunit of voltage-gated sodium channels in fast inactivation. J Membr Biol 183(2):103–114

    Article  CAS  PubMed  Google Scholar 

  19. Mantegazza M, Yu FH, Catterall WA, Scheuer T (2001) Role of the C-terminal domain in inactivation of brain and cardiac sodium channels. Proc Natl Acad Sci 98(26):15348–15353. doi:10.1073/pnas.211563298

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Klamer D, Engel JA, Svensson L (2004) Phencyclidine-induced behaviour in mice prevented by methylene blue. Basic Clin Pharmacol Toxicol 94(2):65–72

    Article  CAS  PubMed  Google Scholar 

  21. van Bebber F, Paquet D, Hruscha A, Schmid B, Haass C (2010) Methylene blue fails to inhibit Tau and polyglutamine protein dependent toxicity in zebrafish. Neurobiol Dis 39(3):265–271, doi: http://dx.doi.org/10.1016/j.nbd.2010.03.023

    Google Scholar 

  22. Vaccaro A, Patten SA, Ciura S, Maios C, Therrien M, Drapeau P, Kabashi E, Parker JA (2012) Methylene blue protects against TDP-43 and FUS neuronal toxicity in C. elegans and D. rerio. PLoS One 7(7):e42117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Goll MG, Anderson R, Stainier DYR, Spradling AC, Halpern ME (2009) Transcriptional silencing and reactivation in transgenic zebrafish. Genetics 182(3):747–755. doi:10.1534/genetics.109.102079

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Burgess HA, Granato M (2008) The neurogenetic frontier—lessons from misbehaving zebrafish. Brief Funct Genomic Proteomic 7(6):474–482

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Bergeron SA, Hannan MC, Codore H, Fero K, Li G, Moak ZB, Yokogawa T, Burgess HA (2012) Brain selective transgene expression in zebrafish using an NRSE derived motif. Front Neural Circ 6:110. doi:10.3389/fncir.2012.00110

    CAS  Google Scholar 

  26. Xie X, Mathias JR, Smith MA, Walker SL, Teng Y, Distel M, Koster RW, Sirotkin HI, Saxena MT, Mumm JS (2013) Silencer-delimited transgenesis: NRSE/RE1 sequences promote neural-specific transgene expression in a NRSF/REST-dependent manner. BMC Biol 10:93, doi: 1741-7007-10-93 [pii] 10.1186/1741-7007-10-93

    Article  Google Scholar 

  27. O'Malley DM, Kao YH, Fetcho JR (1996) Imaging the functional organization of zebrafish hindbrain segments during escape behaviors. Neuron 17(6):1145–1155

    Article  PubMed  Google Scholar 

  28. Gahtan E, Sankrithi N, Campos JB, O'Malley DM (2002) Evidence for a widespread brain stem escape network in larval zebrafish. J Neurophysiol 87(1):608–614

    PubMed  Google Scholar 

  29. Kettunen P (2012) Calcium imaging in the zebrafish. Adv Exp Med Biol 740:1039–1071. doi:10.1007/978-94-007-2888-2_48

    Google Scholar 

Download references

Acknowledgment

This work was supported by the Intramural Research Program of the Eunice Kennedy Shriver National Institute for Child Health and Human Development.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harold A. Burgess .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Horstick, E.J., Tabor, K.M., Jordan, D.C., Burgess, H.A. (2016). Genetic Ablation, Sensitization, and Isolation of Neurons Using Nitroreductase and Tetrodotoxin-Insensitive Channels. In: Kawakami, K., Patton, E., Orger, M. (eds) Zebrafish. Methods in Molecular Biology, vol 1451. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3771-4_25

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3771-4_25

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3769-1

  • Online ISBN: 978-1-4939-3771-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics