Skip to main content

Correlating Whole Brain Neural Activity with Behavior in Head-Fixed Larval Zebrafish

  • Protocol
  • First Online:
Zebrafish

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1451))

Abstract

We present a protocol to combine behavioral recording and imaging using 2-photon laser-scanning microscopy in head-fixed larval zebrafish that express a genetically encoded calcium indicator. The steps involve restraining the larva in agarose, setting up optics that allow projection of a visual stimulus and infrared illumination to monitor behavior, and analysis of the neuronal and behavioral data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Fetcho JR, O’Malley DM (1997) Imaging neuronal networks in behaving animals. Curr Opin Neurobiol 7:832–838

    Article  CAS  PubMed  Google Scholar 

  2. Kettunen P (2012) Calcium imaging in the zebrafish. Adv Exp Med Biol 740:1039–1071

    Article  CAS  PubMed  Google Scholar 

  3. Ahrens MB, Li JM, Orger MB et al (2012) Brain-wide neuronal dynamics during motor adaptation in zebrafish. Nature 485:471–477

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Ahrens MB, Orger MB, Robson DN et al (2013) Whole-brain functional imaging at cellular resolution using light-sheet microscopy. Nat Methods 10:413–420

    Article  CAS  PubMed  Google Scholar 

  5. Wolf S, Supatto W, Debrégeas G et al (2015) Whole-brain functional imaging with two-photon light-sheet microscopy. Nat Methods 12:379–380

    Article  CAS  PubMed  Google Scholar 

  6. Portugues R, Feierstein CE, Engert F et al (2014) Whole-brain activity maps reveal stereotyped, distributed networks for visuomotor behavior. Neuron 81:1328–1343

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Renninger SL, Orger MB (2013) Two-photon imaging of neural population activity in zebrafish. Methods 62:255–267

    Article  CAS  PubMed  Google Scholar 

  8. Niell CM, Smith SJ (2005) Functional imaging reveals rapid development of visual response properties in the zebrafish tectum. Neuron 45:941–951

    Article  CAS  PubMed  Google Scholar 

  9. O'Malley DM, Sankrithi NS, Borla MA et al (2004) Optical physiology and locomotor behaviors of wild-type and nacre zebrafish. Methods Cell Biol 76:261–284

    Article  PubMed  Google Scholar 

  10. Portugues R, Engert F (2011) Adaptive locomotor behavior in larval zebrafish. Front Syst Neurosci 5:72

    Article  PubMed  PubMed Central  Google Scholar 

  11. Lister JA, Robertson CP, Lepage T et al (1999) Nacre encodes a zebrafish microphthalmia-related protein that regulates neural-crest-derived pigment cell fate. Development 126:3757–3767

    CAS  PubMed  Google Scholar 

  12. Severi K, Portugues R, Marques J et al (2014) Neural control and modulation of swimming speed in the larval zebrafish. Neuron 83(3):692–707

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Orger MB, Kampff AR, Severi KE et al (2008) Control of visually guided behavior by distinct populations of spinal projection neurons. Nat Neurosci 11:327–333

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Miri A, Daie K, Burdine RD et al (2011) Regression-based identification of behavior-encoding neurons during large-scale optical imaging of neural activity at cellular resolution. J Neurophysiol 105:964–980

    Article  PubMed  Google Scholar 

  15. Nestares O, Heeger DJ (2000) Robust multiresolution alignment of MRI brain volumes. Magn Reson Med 43:705–715

    Article  CAS  PubMed  Google Scholar 

  16. Mukamel EA, Nimmerjahn A, Schnitzer MJ (2009) Automated analysis of cellular signals from large-scale calcium imaging data. Neuron 63:747–760

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Romano SA, Pietri T, Pérez-Schuster V et al (2015) Spontaneous neuronal network dynamics reveal circuit’s functional adaptations for behavior. Neuron 85:1070–1085

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Kim CK, Miri A, Leung LC et al (2014) Prolonged, brain-wide expression of nuclear-localized GCaMP3 for functional circuit mapping. Front Neural Circ 8:138

    Google Scholar 

  19. Akerboom J, Chen TW, Wardill TJ et al (2012) Optimization of a GCaMP calcium indicator for neural activity imaging. J Neurosci 32:13819–13840

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Straw AD (2008) Vision egg: an open-source library for realtime visual stimulus generation. Front Neuroinformatics 2

    Google Scholar 

  21. Brainard DH (1997) The psychophysics toolbox. Spat Vis 10:433–436

    Article  CAS  PubMed  Google Scholar 

  22. Page-Mccaw PS, Chung SC, Muto A et al (2004) Retinal network adaptation to bright light requires tyrosinase. Nat Neurosci 7:1329–1336

    Article  CAS  PubMed  Google Scholar 

  23. Kubo F, Hablitzel B, Maschio MD et al (2014) Functional architecture of an optic flow-responsive area that drives horizontal eye movements in zebrafish. Neuron 81:1344–1359

    Article  CAS  PubMed  Google Scholar 

  24. Bianco IH, Engert F (2015) Visuomotor transformations underlying hunting behavior in zebrafish. Curr Biol 25:831–846

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Huber D, Gutnisky DA, Peron S et al (2012) Multiple dynamic representations in the motor cortex during sensorimotor learning. Nature 484:473–478

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the contribution of colleagues Claudia Feierstein and Florian Engert to the development of the methods described in this protocol. MBO was supported by a Marie Curie Career Integration Grant, PCIG09-GA-2011-294049. RP was supported by the Max Planck Society.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruben Portugues .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Orger, M.B., Portugues, R. (2016). Correlating Whole Brain Neural Activity with Behavior in Head-Fixed Larval Zebrafish. In: Kawakami, K., Patton, E., Orger, M. (eds) Zebrafish. Methods in Molecular Biology, vol 1451. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3771-4_21

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3771-4_21

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3769-1

  • Online ISBN: 978-1-4939-3771-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics