Skip to main content

Analysis of Nicotinic Acetylcholine Receptor (nAChR) Gene Expression in Zebrafish (Danio rerio) by In Situ Hybridization and PCR

  • Protocol
  • First Online:
Nicotinic Acetylcholine Receptor Technologies

Part of the book series: Neuromethods ((NM,volume 117))

Abstract

Zebrafish (Danio rerio) have been established as an ideal model animal to study neural development, with several advantages over mice, rats, humans, or in vitro cell-based work. Zebrafish embryos develop externally and can either be genetically (using casper or albino strains) or pharmacologically (PTU) manipulated to be transparent, which persists throughout adulthood. Optical transparency allows the localization of gene expression in whole animals with relative ease. Many strains are available, including transgenic fish expressing a number of fluorescent markers in cell-specific manners. A large number of fish can be raised inexpensively, and all stages are free swimming and can be exposed to drugs for high-throughput screening. A number of behavioral assays used in mice, such as those used to test conditioned place preference (CPP), locomotor function, and anxiety, are available with zebrafish.

Zebrafish express a family of muscle and neural nicotinic acetylcholine receptor (nAChR) genes. Our laboratory has cloned α2a, α3, α4, α6, α7, β2, β3a, and β4 neuronal cDNAs, although genomic analysis indicates others exist as well. Several zebrafish nAChR subtypes have been expressed in Xenopus oocytes and we have shown that some zebrafish nAChR subtypes share similar pharmacological properties with those of mice, rat, and human nAChRs.

Given the many advantages of the zebrafish to study nAChRs, it is important to analyze the expression of nAChRs in developing zebrafish, as well as their expression in pharmacologically manipulated animals or in disease models. We describe how we have used in situ hybridization, polymerase chain reaction (PCR), and rapid amplification of cDNA ends (RACE) cloning identify and study zebrafish neuronal nAChR expression.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Haffter P, Granato M, Brand M, Mullins MC, Hammerschmidt M, Kane DA, Odenthal J, van Eeden FJ, Jiang YJ, Heisenberg CP, Kelsh RN, Furutani-Seiki M, Vogelsang E, Beuchle D, Schach U, Fabian C, Nusslein-Volhard C (1996) The identification of genes with unique and essential functions in the development of the zebrafish, Danio rerio. Development 123:1–36

    CAS  PubMed  Google Scholar 

  2. Driever W, Stemple D, Schier A, Solnica-Krezel L (1994) Zebrafish: genetic tools for studying vertebrate development. Trends Genet 10:152–159

    Article  CAS  PubMed  Google Scholar 

  3. Driever W, Solnica-Krezel L, Schier AF, Neuhauss SC, Malicki J, Stemple DL, Stainier DY, Zwartkruis F, Abdelilah S, Rangini Z, Belak J, Boggs C (1996) A genetic screen for mutations affecting embryogenesis in zebrafish. Development 123:37–46

    CAS  PubMed  Google Scholar 

  4. Phillips JB, Westerfield M (2014) Zebrafish models in translational research: tipping the scales toward advancements in human health. Dis Model Mech 7:739–743

    Article  PubMed  PubMed Central  Google Scholar 

  5. Ackermann GE, Paw BH (2003) Zebrafish: a genetic model for vertebrate organogenesis and human disorders. Front Biosci 8:d1227–d1253

    Article  CAS  PubMed  Google Scholar 

  6. Delvecchio C, Tiefenbach J, Krause HM (2011) The zebrafish: a powerful platform for in vivo, HTS drug discovery. Assay Drug Dev Technol 9:354–361

    Article  CAS  PubMed  Google Scholar 

  7. Westerfield M (2007) The zebrafish book. A guide for the laboratory use of zebrafish (Danio rerio), 5th edn. Univ. of Oregon Press, Eugene

    Google Scholar 

  8. Kimmel C, Ballard W, Kimmel S, Ullmann B, Schilling T (1995) Stages of embryonic development of the zebrafish. Dev Dyn 203:253–310

    Article  CAS  PubMed  Google Scholar 

  9. White RM, Sessa A, Burjke C et al (2008) Transparent adult zebrafish as a tool for in vivo transplantation analysis. Cell Stem Cell 2:183–189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Ono F, Higashijima S, Shcherbatko A, Fetcho JR, Brehm P (2001) Paralytic zebrafish lacking acetylcholine receptors fail to localize rapsyn clusters to the synapse. J Neurosci 21(15):5439–5448

    CAS  PubMed  Google Scholar 

  11. Park JY, Mott M, Williams T, Ikeda H, Wen H, Linhoff M, Ono F (2014) A single mutation in the acetylcholine receptor δ-subunit causes distinct effects in two types of neuromuscular synapses. J Neurosci 34(31):10211–10218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Boyd RT (2013) Use of zebrafish to identify new CNS drugs acting through nicotinic and dopaminergic systems. Front CNS Drug Discov 2:381–406

    Google Scholar 

  13. Levin ED, Chen E (2004) Nicotinic involvement in memory function in zebrafish. Neurotox Teratol 26(6):731–735

    Article  CAS  Google Scholar 

  14. Levin ED, Limpuangthip J, Rachakonda T, Peterson M (2006) Timing of nicotine effects on learning in zebrafish. Psychopharmacology 184(3–4):547–552

    Article  CAS  PubMed  Google Scholar 

  15. Levin ED, Bencan Z, Cerutti DT (2007) Anxiolytic effects of nicotine in zebrafish. Physiol Behav 90(1):54–58

    Article  CAS  PubMed  Google Scholar 

  16. Bencan Z, Levin ED (2008) The role of alpha7 and alpha4beta2 nicotinic receptors in the nicotine-induced anxiolytic effect in zebrafish. Physiol Behav 95(3):408–412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Ackerman KM, Nakkula R, Zirger JM, Beattie CE, Boyd RT (2009) Cloning and spatiotemporal expression of zebrafish neuronal nicotinic acetylcholine receptor alpha 6 and alpha 4 subunit RNAs. Dev Dyn 238(4):980–992

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Zirger JM, Beattie CE, McKay DB, Boyd RT (2003) Cloning and expression of zebrafish neuronal nicotinic acetylcholine receptors. Gene Expr Patterns 3(6):747–754

    Article  CAS  PubMed  Google Scholar 

  19. Papke RL, Ono F, Stokes C, Urban JM, Boyd RT (2012) The nicotinic acetylcholine receptors of zebrafish and an evaluation of pharmacological tools used for their study. Biochem Pharmacol 84(3):352–365

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Hong E, Santhakumar K, Akitake CA, Ahn SJ, Thisse C, Thisse B, Wyart C, Mangin JM, Halpern ME (2013) Cholinergic left-right asymmetry in the habenulo-interpeduncular pathway. Proc Natl Acad Sci U S A 110(52):21171–21176

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Menelaou E, Udvadia AJ, Tanguay RL, Svoboda KR (2014) Activation of α2A-containing nicotinic acetylcholine receptors mediates nicotine-induced motor output in embryonic zebrafish. Eur J Neurosci 40:2225–2240

    Article  PubMed  PubMed Central  Google Scholar 

  22. Howe K, Clark MW, Torroja CF et al (2013) The zebrafish reference genome sequence and its relationship to the human genome. Nature 496(7446):498–503

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Kozak M (1987) An analysis of 59 noncoding sequences from 699 vertebrate messenger RNAs. Nucleic Acids Res 15(20):8125–8148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Novak AE, Ribera AB (2003) Immunocytochemistry as a tool for zebrafish developmental neurobiology. Methods Cell Sci 25(1–2):79–83

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank Dr. Christine Beattie, the late Dr. Paul Henion along with the members of the Henion and Beattie labs at The Ohio State University for their support over the years. We would also like to thank Dr. Jeff Zirger, a former member of the lab, for his early work identifying nAChRs in zebrafish.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Thomas Boyd .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Ackerman, K.M., Boyd, R.T. (2016). Analysis of Nicotinic Acetylcholine Receptor (nAChR) Gene Expression in Zebrafish (Danio rerio) by In Situ Hybridization and PCR. In: Li, M. (eds) Nicotinic Acetylcholine Receptor Technologies. Neuromethods, vol 117. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3768-4_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3768-4_1

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3766-0

  • Online ISBN: 978-1-4939-3768-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics