Skip to main content

Studying Evolutionary Dynamics of Gene Families Encoding SUMO-Activating Enzymes with SeaView and ProtTest

  • Protocol
  • First Online:
Plant Proteostasis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1450))

Abstract

Molecular evolutionary analysis of gene families commonly involves a sequence of steps including multiple sequence alignment (MSA) and reconstructing phylogenetic trees, using any of the multiple algorithms available. SeaView is a multiplatform program that integrates different methods for performing the above tasks, and others, within a friendly and simple-to-use graphical user interface (Gouy et al. Mol Biol Evol 27(2):221–224, 2010). By using SeaView, we will investigate the evolutionary relationships among SAE1 genes in Brassicaceae species by means of two alternative methods of phylogenetic reconstruction: Maximum Likelihood (ML) and Neighbor-Joining (NJ). Prior to ML phylogenetic analysis (Guindon and Gascuel. Syst Biol 52(5):696–704, 2003), we will use ProtTest to select the best-fit evolutionary model of amino acid substitution for the MSA of SAE1 proteins (Abascal et al. Bioinformatics 21(9):2104–2105, 2005).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sokal RR, Michener CD (1958) A statistical method for evaluating systematic relationships. Univ Kansas Sci Bull 28:1409–1438

    Google Scholar 

  2. Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    CAS  PubMed  Google Scholar 

  3. Fitch WM (1971) Toward defining the course of evolution: minimum change for a specific tree topology. Syst Biol 20(4):406–416. doi:10.1093/sysbio/20.4.406

    Article  Google Scholar 

  4. Felsenstein J (1981) Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17:368–376

    Article  CAS  PubMed  Google Scholar 

  5. Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783

    Article  Google Scholar 

  6. Gouy M, Guindon S, Gascuel O (2010) SeaView version 4: a multiplatform graphical user interface for sequence alignment and phylogenetic tree building. Mol Biol Evol 27(2):221–224. doi:10.1093/molbev/msp259

    Article  CAS  PubMed  Google Scholar 

  7. Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32(5):1792–1797. doi:10.1093/nar/gkh340, 32/5/1792 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Sievers F, Wilm A, Dineen D, Gibson TJ, Karplus K, Li W, Lopez R, McWilliam H, Remmert M, Soding J, Thompson JD, Higgins DG (2011) Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol Syst Biol 7:539. doi:10.1038/msb.2011.75

    Article  PubMed  PubMed Central  Google Scholar 

  9. Castano-Miquel L, Segui J, Manrique S, Teixeira I, Carretero-Paulet L, Atencio F, Lois LM (2013) Diversification of SUMO-activating enzyme in Arabidopsis: implications in SUMO conjugation. Mol Plant 6(5):1646–1660. doi:10.1093/mp/sst049

    Article  CAS  PubMed  Google Scholar 

  10. Abascal F, Zardoya R, Posada D (2005) ProtTest: selection of best-fit models of protein evolution. Bioinformatics 21(9):2104–2105. doi:10.1093/bioinformatics/bti263, bti263 [pii]

    Article  CAS  PubMed  Google Scholar 

  11. Akaike H (1974) A new look at the statistical model identification. IEEE Trans Auto Contr 19(6):716–723. doi:10.1109/TAC.1974.1100705

    Article  Google Scholar 

  12. Sugiura N (1978) Further analysts of the data by akaike’ s information criterion and the finite corrections. Commun Stat Theory Meth 7(1):13–26. doi:10.1080/03610927808827599

    Article  Google Scholar 

  13. Schwarz G (1978) Estimating the dimension of a model. Ann Stat 6:461–464. doi:10.1214/aos/1176344136

    Article  Google Scholar 

  14. Minin V, Abdo Z, Joyce P, Sullivan J (2003) Performance-based selection of likelihood models for phylogeny estimation. Syst Biol 52(5):674–683

    Article  PubMed  Google Scholar 

  15. Reeves JH (1992) Heterogeneity in the substitution process of amino acid sites of proteins coded for by mitochondrial DNA. J Mol Evol 35(1):17–31

    Article  CAS  PubMed  Google Scholar 

  16. Yang Z (1993) Maximum-likelihood estimation of phylogeny from DNA sequences when substitution rates differ over sites. Mol Biol Evol 10(6):1396–1401

    CAS  PubMed  Google Scholar 

  17. Cao Y, Adachi J, Janke A, Paabo S, Hasegawa M (1994) Phylogenetic relationships among eutherian orders estimated from inferred sequences of mitochondrial proteins: instability of a tree based on a single gene. J Mol Evol 39(5):519–527

    Article  CAS  PubMed  Google Scholar 

  18. Darriba D, Taboada GL, Doallo R, Posada D (2011) ProtTest 3: fast selection of best-fit models of protein evolution. Bioinformatics 27(8):1164–1165. doi:10.1093/bioinformatics/btr088

    Article  CAS  PubMed  Google Scholar 

  19. Jones DT, Taylor WR, Thornton JM (1992) The rapid generation of mutation data matrices from protein sequences. Comput Appl Biosci 8(3):275–282

    CAS  PubMed  Google Scholar 

  20. Guindon S, Gascuel O (2003) A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol 52(5):696–704, 54QHX07WB5K5XCX4 [pii]

    Article  PubMed  Google Scholar 

  21. Anisimova M, Gascuel O (2006) Approximate likelihood-ratio test for branches: a fast, accurate, and powerful alternative. Syst Biol 55(4):539–552. doi:10.1080/10635150600755453, T808388N86673K61 [pii]

    Article  PubMed  Google Scholar 

  22. Guindon S, Dufayard JF, Lefort V, Anisimova M, Hordijk W, Gascuel O (2010) New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst Biol 59(3):307–321. doi:10.1093/sysbio/syq010

    Article  CAS  PubMed  Google Scholar 

  23. Posada D, Crandall KA (2001) Selecting the best-fit model of nucleotide substitution. Syst Biol 50(4):580–601

    Article  CAS  PubMed  Google Scholar 

  24. Zuckerkandl E, Pauling L (1965) Molecules as documents of evolutionary history. J Theor Biol 8(2):357–366

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lorenzo Carretero-Paulet .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Carretero-Paulet, L., Albert, V.A. (2016). Studying Evolutionary Dynamics of Gene Families Encoding SUMO-Activating Enzymes with SeaView and ProtTest. In: Lois, L., Matthiesen, R. (eds) Plant Proteostasis. Methods in Molecular Biology, vol 1450. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3759-2_22

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3759-2_22

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3757-8

  • Online ISBN: 978-1-4939-3759-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics