Skip to main content
Book cover

Proteostasis pp 349–367Cite as

Blot-MS of Carbonylated Proteins: A Tool to Identify Oxidized Proteins

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1449))

Abstract

The efficiency of proteostasis regulation declines during aging and the failure of protein homeostasis is common in age-related diseases. Protein oxidation is a major contributor to the loss of proteome homeostasis, also called “proteostasis,” precluding protein misfolding and aggregation. So, the identification of the molecular pathways impaired by protein oxidation will increase the understanding of proteostasis and the pathophysiological conditions related to the loss of proteostasis. Sample derivatization with dinitrophenyl hydrazine and western blot immunoassay detection of carbonylated proteins (commonly known as Oxyblot™) coupled to mass spectrometry (blot-MS) is an attractive methodological approach to identify proteins that are more prone to carbonylation, a typical oxidative modification of amino acid residues. The integration of blot-MS data of carbonylated proteins with bioinformatics tools allows the identification of the biological processes more affected by protein oxidation and that, eventually, result in the loss of proteostasis.

In this chapter, we describe a blot-MS methodology to identify the proteins more prone to oxidation in biological samples, as cell and tissue extracts, and biofluids. Analysis of mitochondria isolated from cardiac tissue is provided as an example. Bioinformatic strategy to deal with data retrieved from blot—MS experiments are proposed for the identification of relevant biological processes modulated by oxidative stress stimuli.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Padrao AI, Ferreira RM, Vitorino R, Alves RM, Neuparth MJ, Duarte JA et al (2011) OXPHOS susceptibility to oxidative modifications: the role of heart mitochondrial subcellular location. Biochim Biophys Acta 1807(9):1106–1113

    Article  CAS  PubMed  Google Scholar 

  2. Murray J, Oquendo CE, Willis JH, Marusich MF, Capaldi RA (2008) Monitoring oxidative and nitrative modification of cellular proteins; a paradigm for identifying key disease related markers of oxidative stress. Adv Drug Deliv Rev 60(13–14):1497–1503

    Article  CAS  PubMed  Google Scholar 

  3. Stadtman ER, Berlett BS (1997) Reactive oxygen-mediated protein oxidation in aging and disease. Chem Res Toxicol 10(5):485–494

    Article  CAS  PubMed  Google Scholar 

  4. Starke PE, Oliver CN, Stadtman ER (1987) Modification of hepatic proteins in rats exposed to high oxygen concentration. FASEB J 1(1):36–39

    CAS  PubMed  Google Scholar 

  5. Starke-Reed PE, Oliver CN (1989) Protein oxidation and proteolysis during aging and oxidative stress. Arch Biochem Biophys 275(2):559–567

    Article  CAS  PubMed  Google Scholar 

  6. Dasgupta A, Zheng J, Perrone-Bizzozero NI, Bizzozero OA (2013) Increased carbonylation, protein aggregation and apoptosis in the spinal cord of mice with experimental autoimmune encephalomyelitis. ASN Neuro 5(1):e00111

    PubMed  PubMed Central  Google Scholar 

  7. Dalle-Donne I, Rossi R, Giustarini D, Gagliano N, Lusini L, Milzani A et al (2001) Actin carbonylation: from a simple marker of protein oxidation to relevant signs of severe functional impairment. Free Radic Biol Med 31(9):1075–1083

    Article  CAS  PubMed  Google Scholar 

  8. Nystrom T (2005) Role of oxidative carbonylation in protein quality control and senescence. EMBO J 24(7):1311–1317

    Article  PubMed  PubMed Central  Google Scholar 

  9. Maisonneuve E, Fraysse L, Lignon S, Capron L, Dukan S (2008) Carbonylated proteins are detectable only in a degradation-resistant aggregate state in Escherichia coli. J Bacteriol 190(20):6609–6614

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Hartl FU, Bracher A, Hayer-Hartl M (2011) Molecular chaperones in protein folding and proteostasis. Nature 475(7356):324–332

    Article  CAS  PubMed  Google Scholar 

  11. Hipp MS, Park SH, Hartl FU (2014) Proteostasis impairment in protein-misfolding and -aggregation diseases. Trends Cell Biol 24(9):506–514

    Article  CAS  PubMed  Google Scholar 

  12. Dalle-Donne I, Carini M, Orioli M, Vistoli G, Regazzoni L, Colombo G et al (2009) Protein carbonylation: 2,4-dinitrophenylhydrazine reacts with both aldehydes/ketones and sulfenic acids. Free Radic Biol Med 46(10):1411–1419

    Article  CAS  PubMed  Google Scholar 

  13. Padrao AI, Ferreira R, Vitorino R, Alves RM, Figueiredo P, Duarte JA et al (2012) Effect of lifestyle on age-related mitochondrial protein oxidation in mice cardiac muscle. Eur J Appl Physiol 112(4):1467–1474

    Article  CAS  PubMed  Google Scholar 

  14. Alves RM, Vitorino R, Figueiredo P, Duarte JA, Ferreira R, Amado F (2010) Lifelong physical activity modulation of the skeletal muscle mitochondrial proteome in mice. J Gerontol A Biol Sci Med Sci 65(8):832–842

    Article  PubMed  Google Scholar 

  15. Conrad CC, Choi J, Malakowsky CA, Talent JM, Dai R, Marshall P et al (2001) Identification of protein carbonyls after two-dimensional electrophoresis. Proteomics 1(7):829–834

    Article  CAS  PubMed  Google Scholar 

  16. Talent JM, Kong Y, Gracy RW (1998) A double stain for total and oxidized proteins from two-dimensional fingerprints. Anal Biochem 263(1):31–38

    Article  CAS  PubMed  Google Scholar 

  17. Bindea G, Mlecnik B, Hackl H, Charoentong P, Tosolini M, Kirilovsky A et al (2009) ClueGO: a Cytoscape plug-in to decipher functionally grouped gene ontology and pathway annotation networks. Bioinformatics 25(8):1091–1093

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Bindea G, Galon J, Mlecnik B (2013) CluePedia Cytoscape plugin: pathway insights using integrated experimental and in silico data. Bioinformatics 29(5):661–663

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Ferreira R, Vitorino R, Alves RM, Appell HJ, Powers SK, Duarte JA et al (2010) Subsarcolemmal and intermyofibrillar mitochondria proteome differences disclose functional specializations in skeletal muscle. Proteomics 10(17):3142–3154

    Article  CAS  PubMed  Google Scholar 

  20. Padrao AI, Carvalho T, Vitorino R, Alves RM, Caseiro A, Duarte JA et al (2012) Impaired protein quality control system underlies mitochondrial dysfunction in skeletal muscle of streptozotocin-induced diabetic rats. Biochim Biophys Acta 1822(8):1189–1197

    Article  CAS  PubMed  Google Scholar 

  21. Magalhães J, Ascensão A, Soares JMC, Ferreira R, Neuparth MJ, Marques F et al (2005) Acute and severe hypobaric hypoxia increases oxidative stress and impairs mitochondrial function in mouse skeletal muscle. J Appl Physiol 99(4):1247–1253

    Article  PubMed  Google Scholar 

  22. Ascensão A, Magalhães J, Soares JMC, Ferreira R, Neuparth MJ, Marques F et al (2005) Moderate endurance training prevents doxorubicin-induced in vivo mitochondriopathy and reduces the development of cardiac apoptosis. Am J Physiol Heart Circ Physiol 289(2):H722–H731

    Article  PubMed  Google Scholar 

  23. Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM et al (2000) Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat Genet 25(1):25–29

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Kanehisa M, Goto S, Kawashima S, Nakaya A (2002) The KEGG databases at GenomeNet. Nucleic Acids Res 30(1):42–46

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. LLC B. BioCarta 2000. http://www.biocarta.com.

Download references

Acknowledgments

This work was supported by Portuguese Foundation for Science and Technology (FCT), European Union, QREN, FEDER, and COMPETE for funding the QOPNA research unit (project PEst-C/QUI/UI0062/2013; FCOMP-01-0124-FEDER-037296), iBiMED, (UID/BIM/04501/2013), the Cardiovascular R&D Unit (UID/IC/00051/2013) the research projects (PTDC/DES/114122/2009; FCOMP-01-0124-FEDER-014077; EXPL/DTP-DES/1010/2013; FCOMP-01-0124-FEDER-041115), and RNEM (REDE/1504/REM/2005 that concerns the Portuguese Mass Spectrometry Network). The authors would like to acknowledge the support of COST action BM1307.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rui Vitorino .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Ferreira, R., Domingues, P., Amado, F., Vitorino, R. (2016). Blot-MS of Carbonylated Proteins: A Tool to Identify Oxidized Proteins. In: Matthiesen, R. (eds) Proteostasis. Methods in Molecular Biology, vol 1449. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3756-1_23

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3756-1_23

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3754-7

  • Online ISBN: 978-1-4939-3756-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics