Skip to main content

Production of Osteoclasts for Studying Protein Tyrosine Phosphatase Signaling

  • Protocol
  • First Online:
Protein Tyrosine Phosphatases

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1447))

  • 1656 Accesses

Abstract

Osteoclasts, specialized cells that degrade bone, are key components of the cellular system that regulates and maintains bone homeostasis. Aberrant function of osteoclasts can lead to pathological loss or gain of bone mass, such as in osteopetrosis, osteoporosis, and several types of cancer that metastasize to bone. Phosphorylation of osteoclast proteins on tyrosine residues is critical for formation of osteoclasts and for their proper function and responses to physiological signals. Here we describe preparation and growth of osteoclasts from bone marrow of mice, use of viral vectors to downregulate expression of endogenous proteins and to express exogenous proteins in osteoclasts, and analysis of signaling processes triggered by M-CSF, estrogen, and physical contact with matrix in these cells.

*The authors are contributed equally.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bruzzaniti A, Baron R (2006) Molecular regulation of osteoclast activity. Rev Endocr Metab Disord 7(1–2):123–139

    CAS  PubMed  Google Scholar 

  2. Teitelbaum SL (2011) The osteoclast and its unique cytoskeleton. Ann N Y Acad Sci 1240:14–17

    Article  CAS  PubMed  Google Scholar 

  3. Jurdic P, Saltel F, Chabadel A, Destaing O (2006) Podosome and sealing zone: specificity of the osteoclast model. Eur J Cell Biol 85(3–4):195–202

    Article  CAS  PubMed  Google Scholar 

  4. Georgess D, Machuca-Gayet I, Blangy A, Jurdic P (2014) Podosome organization drives osteoclast-mediated bone resorption. Cell Adh Migr 8(3):191–204

    Article  PubMed  Google Scholar 

  5. Teitelbaum SL (2007) Osteoclasts: what do they do and how do they do it? Am J Pathol 170(2):427–435

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Wada T, Nakashima T, Hiroshi N, Penninger JM (2006) RANKL-RANK signaling in osteoclastogenesis and bone disease. Trends Mol Med 12(1):17–25

    Article  CAS  PubMed  Google Scholar 

  7. Ross FP (2006) M-CSF, c-Fms, and signaling in osteoclasts and their precursors. Ann N Y Acad Sci 1068:110–116

    Article  CAS  PubMed  Google Scholar 

  8. Miyazaki T, Sanjay A, Neff L, Tanaka S, Horne WC, Baron R (2004) SRC kinase activity is essential for osteoclast function. J Biol Chem 279(17):17660–17666

    Article  CAS  PubMed  Google Scholar 

  9. Lowe C, Yoneda T, Boyce BF, Chen H, Mundy GR, Soriano P (1993) Osteopetrosis in Src-deficient mice is due to an autonomous defect of osteoclasts. Proc Natl Acad Sci U S A 90(10):4485–4489

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Soriano P, Montgomery C, Geske R, Bradley A (1991) Targeted disruption of the c-src proto-oncogene leads to osteopetrosis in mice. Cell 64(4):693–702

    Article  CAS  PubMed  Google Scholar 

  11. Umeda S, Beamer WG, Takagi K, Naito M, Hayashi S, Yonemitsu H, Yi T, Shultz LD (1999) Deficiency of SHP-1 protein-tyrosine phosphatase activity results in heightened osteoclast function and decreased bone density. Am J Pathol 155(1):223–233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Aoki K, Didomenico E, Sims NA, Mukhopadhyay K, Neff L, Houghton A, Amling M, Levy JB, Horne WC, Baron R (1999) The tyrosine phosphatase SHP-1 is a negative regulator of osteoclastogenesis and osteoclast resorbing activity: increased resorption and osteopenia in me(v)/me(v) mutant mice. Bone 25(3):261–267

    Article  CAS  PubMed  Google Scholar 

  13. Bauler TJ, Kamiya N, Lapinski PE, Langewisch E, Mishina Y, Wilkinson JE, Feng GS, King PD (2011) Development of severe skeletal defects in induced SHP-2-deficient adult mice: a model of skeletal malformation in humans with SHP-2 mutations. Dis Model Mech 4(2):228–239

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Zhou Y, Mohan A, Moore DC, Lin L, Zhou FL, Cao J, Wu Q, Qin YX, Reginato AM, Ehrlich MG, Yang W (2015) SHP2 regulates osteoclastogenesis by promoting preosteoclast fusion. FASEB J. doi:10.1096/fj.14-260844

    Google Scholar 

  15. Shivtiel S, Kollet O, Lapid K, Schajnovitz A, Goichberg P, Kalinkovich A, Shezen E, Tesio M, Netzer N, Petit I, Sharir A, Lapidot T (2008) CD45 regulates retention, motility, and numbers of hematopoietic progenitors, and affects osteoclast remodeling of metaphyseal trabecules. J Exp Med 205(10):2381–2395

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Carlson J, Cui W, Zhang Q, Xu X, Mercan F, Bennett AM, Vignery A (2009) Role of MKP-1 in osteoclasts and bone homeostasis. Am J Pathol 175(4):1564–1573

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Sartori R, Li F, Kirkwood KL (2009) MAP kinase phosphatase-1 protects against inflammatory bone loss. J Dent Res 88(12):1125–1130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Levy-Apter E, Finkelshtein E, Vemulapalli V, Li SS, Bedford MT, Elson A (2014) Adaptor protein GRB2 promotes Src tyrosine kinase activation and podosomal organization by protein-tyrosine phosphatase in osteoclasts. J Biol Chem 289(52):36048–36058

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Granot-Attas S, Luxenburg C, Finkelshtein E, Elson A (2009) PTP epsilon regulates integrin-mediated podosome stability in osteoclasts by activating Src. Mol Biol Cell 20(20):4324–4334

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Chiusaroli R, Knobler H, Luxenburg C, Sanjay A, Granot-Attas S, Tiran Z, Miyazaki T, Harmelin A, Baron R, Elson A (2004) Tyrosine phosphatase epsilon is a positive regulator of osteoclast function in vitro and in vivo. Mol Biol Cell 15(1):234–244

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Finkelshtein E, Lotinun S, Levy-Apter E, Arman E, den Hertog J, Baron R, Elson A (2014) Protein tyrosine phosphatases epsilon and alpha perform nonredundant roles in osteoclasts. Mol Biol Cell 25(11):1808–1818

    Article  PubMed  PubMed Central  Google Scholar 

  22. Chellaiah MA, Kuppuswamy D, Lasky L, Linder S (2007) Phosphorylation of a Wiscott-Aldrich syndrome protein-associated signal complex is critical in osteoclast bone resorption. J Biol Chem 282(13):10104–10116

    Article  CAS  PubMed  Google Scholar 

  23. Chellaiah MA, Schaller MD (2009) Activation of Src kinase by protein-tyrosine phosphatase-PEST in osteoclasts: comparative analysis of the effects of bisphosphonate and protein-tyrosine phosphatase inhibitor on Src activation in vitro. J Cell Physiol 220:382–393

    Article  CAS  PubMed  Google Scholar 

  24. Eleniste PP, Du L, Shivanna M, Bruzzaniti A (2012) Dynamin and PTP-PEST cooperatively regulate Pyk2 dephosphorylation in osteoclasts. Int J Biochem Cell Biol 44(5):790–800

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Rhee I, Davidson D, Souza CM, Vacher J, Veillette A (2013) Macrophage fusion is controlled by the cytoplasmic protein tyrosine phosphatase PTP-PEST/PTPN12. Mol Cell Biol 33(12):2458–2469

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Amoui M, Sheng MH, Chen ST, Baylink DJ, Lau KH (2007) A transmembrane osteoclastic protein-tyrosine phosphatase regulates osteoclast activity in part by promoting osteoclast survival through c-Src-dependent activation of NFkappaB and JNK2. Arch Biochem Biophys 463(1):47–59

    Article  CAS  PubMed  Google Scholar 

  27. Lau KH, Stiffel V, Amoui M (2012) An osteoclastic protein-tyrosine phosphatase regulates the beta3-integrin, syk, and shp1 signaling through respective src-dependent phosphorylation in osteoclasts. Am J Physiol Cell Physiol 302(11):C1676–C1686

    Article  CAS  PubMed  Google Scholar 

  28. Itzstein C, van’t Hof RJ (2012) Osteoclast formation in mouse co-cultures. Methods Mol Biol 816:177–186. doi:10.1007/978-1-61779-415-5_12

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by grants from The Israel Science Foundation, from the Chief Scientist, Israel Ministry of Heath, and from the Kekst Family Institute for Medical Genetics and the David and Fella Shapell Family Center for Genetic Disorders Research, both of the Weizmann Institute of Science (to A.E.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ari Elson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Finkelshtein, E., Levy-Apter, E., Elson, A. (2016). Production of Osteoclasts for Studying Protein Tyrosine Phosphatase Signaling. In: Pulido, R. (eds) Protein Tyrosine Phosphatases. Methods in Molecular Biology, vol 1447. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3746-2_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3746-2_16

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3744-8

  • Online ISBN: 978-1-4939-3746-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics