Skip to main content

NMR Spectroscopy to Study MAP Kinase Binding to MAP Kinase Phosphatases

  • Protocol
  • First Online:
Protein Tyrosine Phosphatases

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1447))

Abstract

NMR spectroscopy and other solution methods are increasingly being used to obtain novel insights into the mechanisms by which MAPK regulatory proteins bind and direct the activity of MAPKs. Here, we describe how interactions between the MAPK p38α and its regulatory proteins are studied using NMR spectroscopy, isothermal titration calorimetry, and small angle X-ray scattering (SAXS).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cuadrado A, Nebreda AR (2010) Mechanisms and functions of p38 MAPK signalling. Biochem J 429(3):403–417. doi:10.1042/BJ20100323, BJ20100323 [pii]

    Article  CAS  PubMed  Google Scholar 

  2. Kim EK, Choi EJ (2010) Pathological roles of MAPK signaling pathways in human diseases. Biochim Biophys Acta 1802(4):396–405. doi:10.1016/j.bbadis.2009.12.009, S0925-4439(10)00015-3 [pii]

    Article  CAS  PubMed  Google Scholar 

  3. Coulthard LR, White DE, Jones DL, McDermott MF, Burchill SA (2009) p38(MAPK): stress responses from molecular mechanisms to therapeutics. Trends Mol Med 15(8):369–379. doi:10.1016/j.molmed.2009.06.005, S1471-4914(09)00114-2 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Brown MD, Sacks DB (2009) Protein scaffolds in MAP kinase signalling. Cell Signal 21(4):462–469. doi:10.1016/j.cellsig.2008.11.013, S0898-6568(08)00345-8 [pii]

    Article  CAS  PubMed  Google Scholar 

  5. Imajo M, Tsuchiya Y, Nishida E (2006) Regulatory mechanisms and functions of MAP kinase signaling pathways. IUBMB Life 58(5–6):312–317. doi:10.1080/15216540600746393, N77103R4L425G181 [pii]

    Article  CAS  PubMed  Google Scholar 

  6. Koveal D, Schuh-Nuhfer N, Ritt D, Page R, Morrison DK, Peti W (2012) A CC-SAM, for coiled coil-sterile alpha motif, domain targets the scaffold KSR-1 to specific sites in the plasma membrane. Sci Signal 5(255):ra94. doi:10.1126/scisignal.2003289

    Article  PubMed  PubMed Central  Google Scholar 

  7. Peti W, Page R (2013) Molecular basis of MAP kinase regulation. Protein Sci 22(12):1698–1710. doi:10.1002/pro.2374

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Akella R, Min X, Wu Q, Gardner KH, Goldsmith EJ (2010) The third conformation of p38alpha MAP kinase observed in phosphorylated p38alpha and in solution. Structure 18(12):1571–1578. doi:10.1016/j.str.2010.09.015, S0969-2126(10)00368-0 [pii]

    Article  CAS  PubMed  Google Scholar 

  9. Akella R, Moon TM, Goldsmith EJ (2008) Unique MAP kinase binding sites. Biochim Biophys Acta 1784(1):48–55. doi:10.1016/j.bbapap.2007.09.016, S1570-9639(07)00281-6 [pii]

    Article  CAS  PubMed  Google Scholar 

  10. Canagarajah BJ, Khokhlatchev A, Cobb MH, Goldsmith EJ (1997) Activation mechanism of the MAP kinase ERK2 by dual phosphorylation. Cell 90(5):859–869, S0092-8674(00)80351-7 [pii]

    Article  CAS  PubMed  Google Scholar 

  11. Chang CI, Xu BE, Akella R, Cobb MH, Goldsmith EJ (2002) Crystal structures of MAP kinase p38 complexed to the docking sites on its nuclear substrate MEF2A and activator MKK3b. Mol Cell 9(6):1241–1249, S1097276502005257 [pii]

    Article  CAS  PubMed  Google Scholar 

  12. Goldsmith EJ, Akella R, Min X, Zhou T, Humphreys JM (2007) Substrate and docking interactions in serine/threonine protein kinases. Chem Rev 107(11):5065–5081. doi:10.1021/cr068221w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Wang Z, Harkins PC, Ulevitch RJ, Han J, Cobb MH, Goldsmith EJ (1997) The structure of mitogen-activated protein kinase p38 at 2.1-A resolution. Proc Natl Acad Sci U S A 94(6):2327–2332

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Wilson KP, Fitzgibbon MJ, Caron PR, Griffith JP, Chen W, McCaffrey PG, Chambers SP, Su MS (1996) Crystal structure of p38 mitogen-activated protein kinase. J Biol Chem 271(44):27696–27700

    Article  CAS  PubMed  Google Scholar 

  15. Zhou T, Sun L, Humphreys J, Goldsmith EJ (2006) Docking interactions induce exposure of activation loop in the MAP kinase ERK2. Structure 14(6):1011–1019. doi:10.1016/j.str.2006.04.006, S0969-2126(06)00222-X [pii]

    Article  CAS  PubMed  Google Scholar 

  16. ter Haar E, Prabhakar P, Prabakhar P, Liu X, Lepre C (2007) Crystal structure of the p38 alpha-MAPKAP kinase 2 heterodimer. J Biol Chem 282(13):9733–9739. doi:10.1074/jbc.M611165200, M611165200 [pii]

    Article  PubMed  Google Scholar 

  17. Francis DM, Rozycki B, Koveal D, Hummer G, Page R, Peti W (2011) Structural basis of p38alpha regulation by hematopoietic tyrosine phosphatase. Nat Chem Biol 7(12):916–924. doi:10.1038/nchembio.707

    Article  CAS  PubMed  Google Scholar 

  18. Francis DM, Rozycki B, Tortajada A, Hummer G, Peti W, Page R (2011) Resting and active states of the ERK2:HePTP complex. J Am Chem Soc 133(43):17138–17141. doi:10.1021/ja2075136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Piserchio A, Francis DM, Koveal D, Dalby KN, Page R, Peti W, Ghose R (2012) Docking interactions of hematopoietic tyrosine phosphatase with MAP kinases ERK2 and p38alpha. Biochemistry 51(41):8047–8049. doi:10.1021/bi3012725

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Piserchio A, Warthaka M, Devkota AK, Kaoud TS, Lee S, Abramczyk O, Ren P, Dalby KN, Ghose R (2011) Solution NMR insights into docking interactions involving inactive ERK2. Biochemistry 50(18):3660–3672. doi:10.1021/bi2000559

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Vogtherr M, Saxena K, Grimme S, Betz M, Schieborr U, Pescatore B, Langer T, Schwalbe H (2005) NMR backbone assignment of the mitogen-activated protein (MAP) kinase p38. J Biomol NMR 32(2):175. doi:10.1007/s10858-005-2449-x

    Article  CAS  PubMed  Google Scholar 

  22. Vogtherr M, Saxena K, Hoelder S, Grimme S, Betz M, Schieborr U, Pescatore B, Robin M, Delarbre L, Langer T, Wendt KU, Schwalbe H (2006) NMR characterization of kinase p38 dynamics in free and ligand-bound forms. Angew Chem Int Ed Engl 45(6):993–997. doi:10.1002/anie.200502770

    Article  CAS  PubMed  Google Scholar 

  23. Wong M, Khirich G, Loria JP (2013) What’s in your buffer? Solute altered millisecond motions detected by solution NMR. Biochemistry 52(37):6548–6558. doi:10.1021/bi400973e

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Johnson BA (2004) Using NMRView to visualize and analyze the NMR spectra of macromolecules. Methods Mol Biol 278:313–352. doi:10.1385/1-59259-809-9:313

    CAS  PubMed  Google Scholar 

  25. Lee W, Tonelli M, Markley JL (2015) NMRFAM-SPARKY: enhanced software for biomolecular NMR spectroscopy. Bioinformatics 31(8):1325–1327. doi:10.1093/bioinformatics/btu830

    Article  PubMed  Google Scholar 

  26. Vranken WF, Boucher W, Stevens TJ, Fogh RH, Pajon A, Llinas M, Ulrich EL, Markley JL, Ionides J, Laue ED (2005) The CCPN data model for NMR spectroscopy: development of a software pipeline. Proteins 59(4):687–696. doi:10.1002/prot.20449

    Article  CAS  PubMed  Google Scholar 

  27. Skinner SP, Goult BT, Fogh RH, Boucher W, Stevens TJ, Laue ED, Vuister GW (2015) Structure calculation, refinement and validation using CcpNmr Analysis. Acta Crystallogr D Biol Crystallogr 71(Pt 1):154–161. doi:10.1107/S1399004714026662

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Peti W, Page R (2007) Strategies to maximize heterologous protein expression in Escherichia coli with minimal cost. Protein Expr Purif 51(1):1–10. doi:10.1016/j.pep.2006.06.024, S1046-5928(06)00195-1 [pii]

    Article  CAS  PubMed  Google Scholar 

  29. Tugarinov V, Hwang PM, Kay LE (2004) Nuclear magnetic resonance spectroscopy of high-molecular-weight proteins. Annu Rev Biochem 73:107–146. doi:10.1146/annurev.biochem.73.011303.074004

    Article  CAS  PubMed  Google Scholar 

  30. Frueh DP (2014) Practical aspects of NMR signal assignment in larger and challenging proteins. Prog Nucl Magn Reson Spectrosc 78:47–75. doi:10.1016/j.pnmrs.2013.12.001

    Article  CAS  PubMed  Google Scholar 

  31. Sugiki T, Ichikawa O, Miyazawa-Onami M, Shimada I, Takahashi H (2012) Isotopic labeling of heterologous proteins in the yeast Pichia pastoris and Kluyveromyces lactis. Methods Mol Biol 831:19–36. doi:10.1007/978-1-61779-480-3_2

    Article  CAS  PubMed  Google Scholar 

  32. Gossert AD, Jahnke W (2012) Isotope labeling in insect cells. Adv Exp Med Biol 992:179–196. doi:10.1007/978-94-007-4954-2_10

    Article  CAS  PubMed  Google Scholar 

  33. Hansen AP, Petros AM, Mazar AP, Pederson TM, Rueter A, Fesik SW (1992) A practical method for uniform isotopic labeling of recombinant proteins in mammalian cells. Biochemistry 31(51):12713–12718

    Article  CAS  PubMed  Google Scholar 

  34. Pervushin K, Riek R, Wider G, Wüthrich K (1997) Attenuated T2 relaxation by mutual cancellation of dipole-dipole coupling and chemical shift anisotropy indicates an avenue to NMR structures of very large biological macromolecules in solution. Proc Natl Acad Sci U S A 94(23):12366–12371

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Barrett PJ, Chen J, Cho MK, Kim JH, Lu Z, Mathew S, Peng D, Song Y, Van Horn WD, Zhuang T, Sonnichsen FD, Sanders CR (2013) The quiet renaissance of protein nuclear magnetic resonance. Biochemistry 52(8):1303–1320. doi:10.1021/bi4000436

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Gardner KH, Kay LE (1998) The use of 2H, 13C, 15N multidimensional NMR to study the structure and dynamics of proteins. Annu Rev Biophys Biomol Struct 27:357–406. doi:10.1146/annurev.biophys.27.1.357

    Article  CAS  PubMed  Google Scholar 

  37. Sitarska A, Skora L, Klopp J, Roest S, Fernandez C, Shrestha B, Gossert AD (2015) Affordable uniform isotope labeling with H, C and N in insect cells. J Biomol NMR. doi:10.1007/s10858-015-9935-6

    PubMed  Google Scholar 

  38. Keller S, Vargas C, Zhao H, Piszczek G, Brautigam CA, Schuck P (2012) High-precision isothermal titration calorimetry with automated peak-shape analysis. Anal Chem 84(11):5066–5073. doi:10.1021/ac3007522

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Zhao H, Piszczek G, Schuck P (2015) SEDPHAT—a platform for global ITC analysis and global multi-method analysis of molecular interactions. Methods 76:137–148. doi:10.1016/j.ymeth.2014.11.012

    Article  CAS  PubMed  Google Scholar 

  40. Bax A, Ikura M (1991) An efficient 3D NMR technique for correlating the proton and 15N backbone amide resonances with the alpha-carbon of the preceding residue in uniformly 15N/13C enriched proteins. J Biomol NMR 1(1):99–104

    Article  CAS  PubMed  Google Scholar 

  41. Francis DM, Page R, Peti W (2014) Sequence-specific backbone (1)H, (1)(3)C and (1)(5)N assignments of the 34 kDa catalytic domain of PTPN5 (STEP). Biomol NMR Assign 8(1):185–188. doi:10.1007/s12104-013-9480-8

    Article  CAS  PubMed  Google Scholar 

  42. Krishnan N, Koveal D, Miller DH, Xue B, Akshinthala SD, Kragelj J, Jensen MR, Gauss CM, Page R, Blackledge M, Muthuswamy SK, Peti W, Tonks NK (2014) Targeting the disordered C terminus of PTP1B with an allosteric inhibitor. Nat Chem Biol 10(7):558–566. doi:10.1038/nchembio.1528

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Williamson MP (2013) Using chemical shift perturbation to characterise ligand binding. Prog Nucl Magn Reson Spectrosc 73:1–16. doi:10.1016/j.pnmrs.2013.02.001

    Article  CAS  PubMed  Google Scholar 

  44. Hoffman AD, Urbatsch IL, Vogel PD (2010) Nucleotide binding to the human multidrug resistance protein 3, MRP3. Protein J 29(5):373–379. doi:10.1007/s10930-010-9262-4

    Article  CAS  PubMed  Google Scholar 

  45. Francis DM, Kumar GS, Koveal D, Tortajada A, Page R, Peti W (2013) The differential regulation of p38alpha by the neuronal kinase interaction motif protein tyrosine phosphatases, a detailed molecular study. Structure 21(9):1612–1623. doi:10.1016/j.str.2013.07.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Wüthrich K (1986) NMR of proteins and nucleic acids. Wiley-Interscience, New York

    Google Scholar 

  47. Gaponenko V, Howarth JW, Columbus L, Gasmi-Seabrook G, Yuan J, Hubbell WL, Rosevear PR (2000) Protein global fold determination using site-directed spin and isotope labeling. Protein Sci 9(2):302–309. doi:10.1110/ps.9.2.302

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Tolman JR, Flanagan JM, Kennedy MA, Prestegard JH (1995) Nuclear magnetic dipole interactions in field-oriented proteins: information for structure determination in solution. Proc Natl Acad Sci U S A 92(20):9279–9283

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Rambo RP, Tainer JA (2013) Super-resolution in solution X-ray scattering and its applications to structural systems biology. Annu Rev Biophys 42:415–441. doi:10.1146/annurev-biophys-083012-130301

    Article  CAS  PubMed  Google Scholar 

  50. de Vries SJ, van Dijk AD, Krzeminski M, van Dijk M, Thureau A, Hsu V, Wassenaar T, Bonvin AM (2007) HADDOCK versus HADDOCK: new features and performance of HADDOCK2.0 on the CAPRI targets. Proteins 69(4):726–733. doi:10.1002/prot.21723

    Article  PubMed  Google Scholar 

  51. Dominguez C, Boelens R, Bonvin AM (2003) HADDOCK: a protein-protein docking approach based on biochemical or biophysical information. J Am Chem Soc 125(7):1731–1737. doi:10.1021/ja026939x

    Article  CAS  PubMed  Google Scholar 

  52. Rozycki B, Kim YC, Hummer G (2011) SAXS ensemble refinement of ESCRT-III CHMP3 conformational transitions. Structure 19(1):109–116. doi:10.1016/j.str.2010.10.006, S0969-2126(10)00395-3 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Yang S, Blachowicz L, Makowski L, Roux B (2010) Multidomain assembled states of Hck tyrosine kinase in solution. Proc Natl Acad Sci U S A 107(36):15757–15762. doi:10.1073/pnas.1004569107, 1004569107 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Allaire M, Yang L (2011) Biomolecular solution X-ray scattering at the National Synchrotron Light Source. J Synchrotron Radiat 18(1):41–44. doi:10.1107/S0909049510036022

    Article  CAS  PubMed  Google Scholar 

  55. Petoukhov MV, Franke D, Shkumatov AV, Tria G, Kikhney AG, Gajda M, Gorba C, Mertens HD, Konarev PV, Svergun DI (2012) New developments in the program package for small-angle scattering data analysis. J Appl Crystallogr 45(Pt 2):342–350. doi:10.1107/S0021889812007662

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Ravikumar KM, Huang W, Yang S (2013) Fast-SAXS-pro: a unified approach to computing SAXS profiles of DNA, RNA, protein, and their complexes. J Chem Phys 138(2):024112. doi:10.1063/1.4774148

    Article  PubMed  Google Scholar 

  57. Romanuka J, van den Bulke H, Kaptein R, Boelens R, Folkers GE (2009) Novel strategies to overcome expression problems encountered with toxic proteins: application to the production of Lac repressor proteins for NMR studies. Protein Expr Purif 67(2):104–112. doi:10.1016/j.pep.2009.05.008

    Article  CAS  PubMed  Google Scholar 

  58. Kumar GS, Zettl H, Page R, Peti W (2013) Structural basis for the regulation of the mitogen-activated protein (MAP) kinase p38alpha by the dual specificity phosphatase 16 MAP kinase binding domain in solution. J Biol Chem 288(39):28347–28356. doi:10.1074/jbc.M113.499178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Nielsen G, Schwalbe H (2011) NMR spectroscopic investigations of the activated p38alpha mitogen-activated protein kinase. Chembiochem 12(17):2599–2607. doi:10.1002/cbic.201100527

    Article  CAS  PubMed  Google Scholar 

  60. Jeeves M, McClelland DM, Barr AJ, Overduin M (2008) Sequence-specific 1H, 13C and 15N backbone resonance assignments of the 34 kDa catalytic domain of human PTPN7. Biomol NMR Assign 2(2):101–103. doi:10.1007/s12104-008-9095-7

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgement

The authors thank the large numbers of highly skilled and ambitious coworkers for their strong support in the effort to better understand protein phosphatases. They are also deeply indebted to many members of the phosphatase field—too many to name—for their support, for their collaborations and their input. We thank Dr. Michael Clarkson (Brown University) for input for the document and Dr. Andrew Hink (UTHSCSA) for input in regard to D2O recycling. This work was supported by NIH grant R01GM098482 to RP, R01GM100910 to WP.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wolfgang Peti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Peti, W., Page, R. (2016). NMR Spectroscopy to Study MAP Kinase Binding to MAP Kinase Phosphatases. In: Pulido, R. (eds) Protein Tyrosine Phosphatases. Methods in Molecular Biology, vol 1447. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3746-2_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3746-2_11

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3744-8

  • Online ISBN: 978-1-4939-3746-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics