Advertisement

Fluorescence Lifetime Imaging of Cancer In Vivo

  • Owen Peng
  • Walter J. AkersEmail author
Protocol
  • 1.8k Downloads
Part of the Methods in Molecular Biology book series (MIMB, volume 1444)

Abstract

Optical imaging of fluorescent reporters in animal models of cancer has become a common tool in oncologic research. Fluorescent reporters including fluorescent proteins, organic dyes, and inorganic photonic materials are used in fluorescence spectroscopy, microscopy, and whole body preclinical imaging. Fluorescence lifetime imaging provides additional, quantitative information beyond that of conventional fluorescence intensity signals, enabling signal multiplexing, background separation, and biological sensing unique to fluorescent materials.

Key words

Molecular imaging Microenvironment Drug delivery Oncology Animal model Time-domain Diffuse spectroscopy Optical Preclinical 

References

  1. 1.
    Lakowicz JR, Szmacinski H, Nowaczyk K, Johnson ML (1992) Fluorescence lifetime imaging of free and protein-bound NADH. Proc Natl Acad Sci U S A 89(4):1271–1275CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Zhong W, Wu M, Chang CW, Merrick KA, Merajver SD, Mycek MA (2007) Picosecond-resolution fluorescence lifetime imaging microscopy: a useful tool for sensing molecular interactions in vivo via FRET. Opt Express 15(26):18220–18235CrossRefPubMedGoogle Scholar
  3. 3.
    Kumar AT, Raymond SB, Bacskai BJ, Boas DA (2008) Comparison of frequency-domain and time-domain fluorescence lifetime tomography. Opt Lett 33(5):470–472CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Nothdurft RE, Patwardhan SV, Akers W, Ye Y, Achilefu S, Culver JP (2009) In vivo fluorescence lifetime tomography. J Biomed Opt 14(2):024004CrossRefPubMedGoogle Scholar
  5. 5.
    Kumar AT, Raymond SB, Dunn AK, Bacskai BJ, Boas DA (2008) A time domain fluorescence tomography system for small animal imaging. IEEE Trans Med Imaging 27(8):1152–1163CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Rice WL, Kumar AT (2014) Preclinical whole body time domain fluorescence lifetime multiplexing of fluorescent proteins. J Biomed Opt 19(4):046005CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Kumar AT, Chung E, Raymond SB, Van de Water JA, Shah K, Fukumura D, Jain RK, Bacskai BJ, Boas DA (2009) Feasibility of in vivo imaging of fluorescent proteins using lifetime contrast. Opt Lett 34(13):2066–2068CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Zhang X, Bloch S, Akers W, Achilefu S (2012) Near-infrared molecular probes for in vivo imaging. Curr Protoc Cytom Chapter 12: Unit12 27Google Scholar
  9. 9.
    Akers W, Lesage F, Holten D, Achilefu S (2007) In vivo resolution of multiexponential decays of multiple near-infrared molecular probes by fluorescence lifetime-gated whole-body time-resolved diffuse optical imaging. Mol Imaging 6(4):237–246PubMedGoogle Scholar
  10. 10.
    Bloch S, Lesage F, McIntosh L, Gandjbakhche A, Liang K, Achilefu S (2005) Whole-body fluorescence lifetime imaging of a tumor-targeted near-infrared molecular probe in mice. J Biomed Opt 10(5):54003CrossRefGoogle Scholar
  11. 11.
    Godavarty A, Sevick-Muraca EM, Eppstein MJ (2005) Three-dimensional fluorescence lifetime tomography. Med Phys 32(4):992–1000CrossRefPubMedGoogle Scholar
  12. 12.
    Hassan M, Riley J, Chernomordik V, Smith P, Pursley R, Lee SB, Capala J, Gandjbakhche AH (2007) Fluorescence lifetime imaging system for in vivo studies. Mol Imaging 6(4):229–236PubMedPubMedCentralGoogle Scholar
  13. 13.
    Abulrob A, Brunette E, Slinn J, Baumann E, Stanimirovic D (2007) In vivo time domain optical imaging of renal ischemia-reperfusion injury: discrimination based on fluorescence lifetime. Mol Imaging 6(5):304–314PubMedGoogle Scholar
  14. 14.
    Gurfinkel M, Thompson AB, Ralston W, Troy TL, Moore AL, Moore TA, Gust JD, Tatman D, Reynolds JS, Muggenburg B, Nikula K, Pandey R, Mayer RH, Hawrysz DJ, Sevick-Muraca EM (2000) Pharmacokinetics of ICG and HPPH-car for the detection of normal and tumor tissue using fluorescence, near-infrared reflectance imaging: a case study. Photochem Photobiol 72(1):94–102CrossRefPubMedGoogle Scholar
  15. 15.
    Cerussi AE, Maier JS, Fantini S, Franceschini MA, Mantulin WW, Gratton E (1997) Experimental verification of a theory for the time-resolved fluorescence spectroscopy of thick tissues. Appl Opt 36(1):116–124CrossRefPubMedGoogle Scholar
  16. 16.
    Kuwana E, Sevick-Muraca EM (2002) Fluorescence lifetime spectroscopy in multiply scattering media with dyes exhibiting multiexponential decay kinetics. Biophys J 83(2):1165–1176CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Ntziachristos V, Ripoll J, Weissleder R (2002) Would near-infrared fluorescence signals propagate through large human organs for clinical studies? Opt Lett 27(5):333–335CrossRefPubMedGoogle Scholar
  18. 18.
    Goiffon RJ, Akers WJ, Berezin MY, Lee H, Achilefu S (2009) Dynamic noninvasive monitoring of renal function in vivo by fluorescence lifetime imaging. J Biomed Opt 14(2):020501CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Akers WJ, Berezin MY, Lee H, Achilefu S (2008) Predicting in vivo fluorescence lifetime behavior of near-infrared fluorescent contrast agents using in vitro measurements. J Biomed Opt 13(5):054042CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Solomon M, Guo K, Sudlow GP, Berezin MY, Edwards WB, Achilefu S, Akers WJ (2011) Detection of enzyme activity in orthotopic murine breast cancer by fluorescence lifetime imaging using a fluorescence resonance energy transfer-based molecular probe. J Biomed Opt 16(6):066019CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Lee H, Akers W, Bhushan K, Bloch S, Sudlow G, Tang R, Achilefu S (2011) Near-infrared pH-activatable fluorescent probes for imaging primary and metastatic breast tumors. Bioconjug Chem 22(4):777–784CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Berezin MY, Guo K, Akers W, Northdurft RE, Culver JP, Teng B, Vasalatiy O, Barbacow K, Gandjbakhche A, Griffiths GL, Achilefu S (2011) Near-infrared fluorescence lifetime pH-sensitive probes. Biophys J 100(8):2063–2072CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Akers WJ, Xu B, Lee H, Sudlow GP, Fields GB, Achilefu S, Edwards WB (2012) Detection of MMP-2 and MMP-9 activity in vivo with a triple-helical peptide optical probe. Bioconjug Chem 23(3):656–663CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Zhang Z, Fan J, Cheney PP, Berezin MY, Edwards WB, Akers WJ, Shen D, Liang K, Culver JP, Achilefu S (2009) Activatable molecular systems using homologous near-infrared fluorescent probes for monitoring enzyme activities in vitro, in cellulo, and in vivo. Mol Pharm 6(2):416–427CrossRefPubMedGoogle Scholar
  25. 25.
    Lee H, Akers WJ, Cheney PP, Edwards WB, Liang K, Culver JP, Achilefu S (2009) Complementary optical and nuclear imaging of caspase-3 activity using combined activatable and radio-labeled multimodality molecular probe. J Biomed Opt 14(4):040507CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Magalotti S, Gustafson TP, Cao Q, Abendschein DR, Pierce RA, Berezin MY, Akers WJ (2013) Evaluation of inflammatory response to acute ischemia using near-infrared fluorescent reactive oxygen sensors. Mol Imaging Biol 15(4):423–430CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Hayashi A, Asanuma D, Kamiya M, Urano Y, Okabe S (2016) High affinity receptor labeling based on basic leucine zipper domain peptides conjugated with pH-sensitive fluorescent dye: visualization of AMPA-type glutamate receptor endocytosis in living neurons. Neuropharmacology 100:66–75CrossRefPubMedGoogle Scholar
  28. 28.
    Sundaram GS, Garai K, Rath NP, Yan P, Cirrito JR, Cairns NJ, Lee JM, Sharma V (2014) Characterization of a brain permeant fluorescent molecule and visualization of Abeta parenchymal plaques, using real-time multiphoton imaging in transgenic mice. Org Lett 16(14):3640–3643CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Zhang X, Tian Y, Zhang C, Tian X, Ross AW, Moir RD, Sun H, Tanzi RE, Moore A, Ran C (2015) Near-infrared fluorescence molecular imaging of amyloid beta species and monitoring therapy in animal models of Alzheimer’s disease. Proc Natl Acad Sci U S A 112(31):9734–9739CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Kikuchi K (2010) Design, synthesis and biological application of chemical probes for bio-imaging. Chem Soc Rev 39(6):2048–2053CrossRefPubMedGoogle Scholar
  31. 31.
    Almutairi A, Akers WJ, Berezin MY, Achilefu S, Frechet JM (2008) Monitoring the biodegradation of dendritic near-infrared nanoprobes by in vivo fluorescence imaging. Mol Pharm 5(6):1103–1110CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    National Research Council (U.S.). Committee for the Update of the Guide for the Care and Use of Laboratory Animals., Institute for Laboratory Animal Research (U.S.), National Academies Press (U.S.) (2011) Guide for the care and use of laboratory animals, 8th edn. National Academies Press, Washington, D.C.Google Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Department of RadiologyWashington University School of MedicineSt. LouisUSA

Personalised recommendations