Advertisement

Using Fluorescence Imaging to Track Drug Delivery and Guide Treatment Planning In Vivo

  • Qiaoya Lin
  • Huang Huang
  • Juan ChenEmail author
  • Gang ZhengEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1444)

Abstract

Imaging has become an indispensable tool in both clinical medicine and preclinical sciences. It enables doctors to locate sites of cancer/disease, track drug delivery, and guide operative planning, thus enhancing the treatment efficacy. Recently, we developed a multimodal theranostic lipid nanoparticles, named HPPS(NIR)-chol-siRNA with its built-in near-infrared (NIR) fluorescent probe core as a useful surrogate for tracking small interfering RNA (siRNA) delivery. By using the image co-registration of computed tomography (CT) and fluorescence molecular tomography (FMT), we achieved noninvasive assessment and treatment planning of siRNA delivery into the orthotopic tumor, thus enabling efficacious RNA interference (RNAi) therapy. In this chapter, we introduce this method to illustrate the use of CT-FMT co-registration for tracking drug delivery and guiding treatment planning in vivo.

Key words

Nanoparticles Fluorescence imaging Computed tomography Fluorescence molecular tomography HDL siRNA delivery 

Notes

Acknowledgements

The authors thank funding support from the China–Canada Joint Health Research Initiative (NSFC-30911120489, CIHR CCI-102936), the Natural Sciences and Engineering Research Council of Canada, the Canadian Institutes for Health Research, the Ontario Institute for Cancer Research, the Prostate Cancer Canada, the DLVR Therapeutics, the Canada Foundation for Innovation, the Princess Margaret Cancer Foundation, and the Joey and Toby Tanenbaum/Brazilian Ball Chair in Prostate Cancer Research.

References

  1. 1.
    Baker M (2010) Whole-animal imaging: the whole picture. Nature 463(7283):977–980CrossRefPubMedGoogle Scholar
  2. 2.
    Ntziachristos V, Ripoll J, Wang LV, Weissleder R (2005) Looking and listening to light: the evolution of whole-body photonic imaging. Nat Biotechnol 23(3):313–320CrossRefPubMedGoogle Scholar
  3. 3.
    Bumcrot D, Manoharan M, Koteliansky V, Sah DW (2006) RNAi therapeutics: a potential new class of pharmaceutical drugs. Nat Chem Biol 2(12):711–719CrossRefPubMedGoogle Scholar
  4. 4.
    Whitehead KA, Langer R, Anderson DG (2009) Knocking down barriers: advances in siRNA delivery. Nat Rev Drug Discov 8(2):129–138CrossRefPubMedGoogle Scholar
  5. 5.
    Tandon P, Farahani K (2011) NCI image-guided drug delivery summit. Cancer Res 71(2):314–317CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Lammers T, Kiessling F, Hennink WE, Storm G (2010) Nanotheranostics and image-guided drug delivery: current concepts and future directions. Mol Pharm 7(6):1899–1912CrossRefPubMedGoogle Scholar
  7. 7.
    Mura S, Couvreur P (2012) Nanotheranostics for personalized medicine. Adv Drug Deliv Rev 64(13):1394–1416CrossRefPubMedGoogle Scholar
  8. 8.
    Medarova Z, Pham W, Farrar C, Petkova V, Moore A (2007) In vivo imaging of siRNA delivery and silencing in tumors. Nat Med 13(3):372–377CrossRefPubMedGoogle Scholar
  9. 9.
    Merkel OM, Librizzi D, Pfestroff A, Schurrat T, Buyens K, Sanders NN, De Smedt SC, Behe M, Kissel T (2009) Stability of siRNA polyplexes from poly(ethylenimine) and poly(ethylenimine)-g-poly(ethylene glycol) under in vivo conditions: effects on pharmacokinetics and biodistribution measured by Fluorescence Fluctuation Spectroscopy and Single Photon Emission Computed Tomography (SPECT) imaging. J Control Release 138(2):148–159CrossRefPubMedGoogle Scholar
  10. 10.
    Bartlett DW, Su H, Hildebrandt IJ, Weber WA, Davis ME (2007) Impact of tumor-specific targeting on the biodistribution and efficacy of siRNA nanoparticles measured by multimodality in vivo imaging. Proc Natl Acad Sci U S A 104(39):15549–15554CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Qi L, Gao X (2008) Quantum dot-amphipol nanocomplex for intracellular delivery and real-time imaging of siRNA. ACS Nano 2(7):1403–1410CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Tan WB, Jiang S, Zhang Y (2007) Quantum-dot based nanoparticles for targeted silencing of HER2/neu gene via RNA interference. Biomaterials 28(8):1565–1571CrossRefPubMedGoogle Scholar
  13. 13.
    Cai W, Hsu AR, Li ZB, Chen X (2007) Are quantum dots ready for in vivo imaging in human subjects? Nanoscale Res Lett 2(6):265–281CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Weissleder R, Pittet MJ (2008) Imaging in the era of molecular oncology. Nature 452(7187):580–589CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Andreu N, Zelmer A, Wiles S (2011) Noninvasive biophotonic imaging for studies of infectious disease. FEMS Microbiol Rev 35(2):360–394CrossRefPubMedGoogle Scholar
  16. 16.
    Ntziachristos V (2010) Going deeper than microscopy: the optical imaging frontier in biology. Nat Methods 7(8):603–614CrossRefPubMedGoogle Scholar
  17. 17.
    Lin Q, Jin CS, Huang H, Ding L, Zhang Z, Chen J, Zheng G (2014) Nanoparticle-enabled, image-guided treatment planning of target specific RNAi therapeutics in an orthotopic prostate cancer model. Small 10(15):3072–3082CrossRefPubMedGoogle Scholar
  18. 18.
    Zhang Z, Cao W, Jin H, Lovell JF, Yang M, Ding L, Chen J, Corbin I, Luo Q, Zheng G (2009) Biomimetic nanocarrier for direct cytosolic drug delivery. Angew Chem 48(48):9171–9175CrossRefGoogle Scholar
  19. 19.
    Mishra VK, Anantharamaiah GM, Segrest JP, Palgunachari MN, Chaddha M, Sham SW, Krishna NR (2006) Association of a model class A (apolipoprotein) amphipathic alpha helical peptide with lipid: high resolution NMR studies of peptide.lipid discoidal complexes. J Biol Chem 281(10):6511–6519CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Princess Margaret Cancer CenterUniversity Health NetworkTorontoCanada
  2. 2.Department of Medical BiophysicsUniversity of TorontoTorontoCanada
  3. 3.Britton Chance Center for Biomedical PhotonicsWuhan National Laboratory for Optoelectronics-Huazhong University of Science and TechnologyWuhanChina
  4. 4.DLVR Therapeutics Inc.TorontoCanada

Personalised recommendations