Small-Animal Imaging Using Diffuse Fluorescence Tomography

  • Scott C. DavisEmail author
  • Kenneth M. Tichauer
Part of the Methods in Molecular Biology book series (MIMB, volume 1444)


Diffuse fluorescence tomography (DFT) has been developed to image the spatial distribution of fluorescence-tagged tracers in living tissue. This capability facilitates the recovery of any number of functional parameters, including enzymatic activity, receptor density, blood flow, and gene expression. However, deploying DFT effectively is complex and often requires years of know-how, especially for newer mutlimodal systems that combine DFT with conventional imaging systems. In this chapter, we step through the process of using MRI-DFT imaging of a receptor-targeted tracer in small animals.

Key words

Molecular imaging Fluorescence Cancer Mutlimodal imaging Anatomical priors MRI Diffuse optics NIRFAST Image reconstruction 



This work was funded by National Institutes of Health Grants R01CA184354, R01CA109558, R01CA156177, and U54CA151662 as well as Department of Defense Award W81XWH-09-1-0661.


  1. 1.
    Corlu A, Choe R, Durduran T, Rosen MA, Schweiger M, Arridge SR, Schnall MD, Yodh AG (2007) Three-dimensional in vivo fluorescence diffuse optical tomography of breast cancer in humans. Opt Express 15(11):6696–6716CrossRefPubMedGoogle Scholar
  2. 2.
    Jacques SL (2013) Optical properties of biological tissues: a review. Phys Med Biol 58(11):R37–R61. doi: 10.1088/0031-9155/58/11/R37 CrossRefPubMedGoogle Scholar
  3. 3.
    Ntziachristos V, Ripoll J, Wang LV, Weissleder R (2005) Looking and listening to light: the evolution of whole-body photonic imaging. Nat Biotechnol 23(3):313–320. doi: 10.1038/nbt1074 CrossRefPubMedGoogle Scholar
  4. 4.
    Da Silva A, Leabad M, Driol C, Bordy T, Debourdeau M, Dinten JM, Peltie P, Rizo P (2009) Optical calibration protocol for an x-ray and optical multimodality tomography system dedicated to small-animal examination. Appl Opt 48(10):D151–D162. doi: 10.1364/Ao.48.00d151 CrossRefPubMedGoogle Scholar
  5. 5.
    Davis SC, Pogue BW, Springett R, Leussler C, Mazurkewitz P, Tuttle SB, Gibbs-Strauss SL, Jiang SS, Dehghani H, Paulsen KD (2008) Magnetic resonance-coupled fluorescence tomography scanner for molecular imaging of tissue. Rev Sci Instrum 79(6), doi: 10.1063/1.2919131; Artn 064302Google Scholar
  6. 6.
    Gruber JD, Paliwal A, Krishnaswamy V, Ghadyani H, Jermyn M, O’Hara JA, Davis SC, Kerley-Hamilton JS, Shworak NW, Maytin EV, Hasan T, Pogue BW (2010) System development for high frequency ultrasound-guided fluorescence quantification of skin layers. J Biomed Opt 15(2), doi: 10.1117/1.3374040; Artn 026028Google Scholar
  7. 7.
    Guo X, Liu X, Wang X, Tian F, Liu F, Zhang B, Hu G, Bai J (2010) A combined fluorescence and microcomputed tomography system for small animal imaging. IEEE Trans Biomed Eng 57(12):2876–2883. doi: 10.1109/TBME.2010.2073468 CrossRefPubMedGoogle Scholar
  8. 8.
    Kepshire D, Mincu N, Hutchins M, Gruber J, Dehghani H, Hypnarowski J, Leblond F, Khayat M, Pogue BW (2009) A microcomputed tomography guided fluorescence tomography system for small animal molecular imaging. Rev Sci Instrum 80(4), doi: 10.1063/1.3109903; Artn 043701Google Scholar
  9. 9.
    Lin Y, Barber WC, Iwanczyk JS, Roeck W, Nalcioglu O, Gulsen G (2010) Quantitative fluorescence tomography using a combined tri-modality FT/DOT/XCT system. Opt Express 18(8):7835–7850. doi: 10.1364/OE.18.007835 CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Lin Y, Ghijsen MT, Gao H, Liu N, Nalcioglu O, Gulsen G (2011) A photo-multiplier tube-based hybrid MRI and frequency domain fluorescence tomography system for small animal imaging. Phys Med Biol 56(15):4731–4747. doi: 10.1088/0031-9155/56/15/007 CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Schulz RB, Ale A, Sarantopoulos A, Freyer M, Soehngen E, Zientkowska M, Ntziachristos V (2010) Hybrid system for simultaneous fluorescence and x-ray computed tomography. IEEE Trans Med Imaging 29(2):465–473. doi: 10.1109/TMI.2009.2035310 CrossRefPubMedGoogle Scholar
  12. 12.
    Stuker F, Baltes C, Dikaiou K, Vats D, Carrara L, Charbon E, Ripoll J, Rudin M (2011) Hybrid small animal imaging system combining magnetic resonance imaging with fluorescence tomography using single photon avalanche diode detectors. IEEE Trans Med Imaging 30(6):1265–1273. doi: 10.1109/TMI.2011.2112669 CrossRefPubMedGoogle Scholar
  13. 13.
    Yang X, Gong H, Quan G, Deng Y, Luo Q (2010) Combined system of fluorescence diffuse optical tomography and microcomputed tomography for small animal imaging. Rev Sci Instrum 81(5):054304. doi: 10.1063/1.3422252 CrossRefPubMedGoogle Scholar
  14. 14.
    Zhang X, Badea C, Hood G, Wetzel A, Qi Y, Stiles J, Johnson GA (2011) High-resolution reconstruction of fluorescent inclusions in mouse thorax using anatomically guided sampling and parallel Monte Carlo computing. Biomed Opt Express 2(9):2449–2460. doi: 10.1364/BOE.2.002449 CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Pressman D, Day ED, Blau M (1957) The use of paired labeling in the determination of tumor-localizing antibodies. Cancer Res 17(9):845–850PubMedGoogle Scholar
  16. 16.
    Baeten J, Haller J, Shih H, Ntziachristos V (2009) In vivo investigation of breast cancer progression by use of an internal control. Neoplasia 11(3):220–227CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Liu JT, Helms MW, Mandella MJ, Crawford JM, Kino GS, Contag CH (2009) Quantifying cell-surface biomarker expression in thick tissues with ratiometric three-dimensional microscopy. Biophys J 96(6):2405–2414. doi: 10.1016/j.bpj.2008.12.3908 CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Tichauer KM, Samkoe KS, Sexton KJ, Hextrum SK, Yang HH, Klubben WS, Gunn JR, Hasan T, Pogue BW (2012) In vivo quantification of tumor receptor binding potential with dual-reporter molecular imaging. Mol Imaging Biol 14(5):584–592. doi: 10.1007/s11307-011-0534-y CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Davis SC, Dehghani H, Wang J, Jiang S, Pogue BW, Paulsen KD (2007) Image-guided diffuse optical fluorescence tomography implemented with Laplacian-type regularization. Opt Express 15(7):4066–4082CrossRefPubMedGoogle Scholar
  20. 20.
    Davis SC, Gibbs-Strauss SL, Tuttle SB, Jiang S, Springett R, Dehghani H, Pogue BW, Paulsen KD (2008) MRI-coupled spectrally-resolved fluorescence tomography for in vivo imaging – art. no. 68500K. SPIE 6850:K8500. doi: 10.1117/12.764252 Google Scholar
  21. 21.
    Davis SC, Pogue BW, Springett R, Leussler C, Mazurkewitz P, Tuttle SB, Gibbs-Strauss SL, Jiang SS, Dehghani H, Paulsen KD (2008) Magnetic resonance-coupled fluorescence tomography scanner for molecular imaging of tissue. Rev Sci Instr 79(6):064302-064301–064302-064310CrossRefGoogle Scholar
  22. 22.
    Davis SC, Samkoe KS, Tichauer KM, Sexton KJ, Gunn JR, Deharvengt SJ, Hasan T, Pogue BW (2013) Dynamic dual-tracer MRI-guided fluorescence tomography to quantify receptor density in vivo. Proc Natl Acad Sci U S A 110(22):9025–9030. doi: 10.1073/pnas.1213490110 CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Davis SC, Samkoe KS, O’Hara JA, Gibbs-Strauss SL, Paulsen KD, Pogue BW (2010) Comparing implementations of magnetic-resonance-guided fluorescence molecular tomography for diagnostic classification of brain tumors. J Biomed Opt 15(5):051602–051610CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Pvd Z (1992) Measurment and modeling of the optical properties of human tissue in the near infrared. University College London, London, UKGoogle Scholar
  25. 25.
    Davis SC, Samkoe KS, O’Hara JA, Gibbs-Strauss SL, Payne HL, Hoopes PJ, Paulsen KD, Pogue BW (2010) MRI-coupled fluorescence tomography quantifies EGFR activity in brain tumors. Acad Radiol 17(3):271–276CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Thayer School of EngineeringDartmouth CollegeHanoverUSA
  2. 2.Armour College of EngineeringIllinois Institute of TechnologyChicagoUSA

Personalised recommendations