Utilization of Near-Infrared Fluorescent Imaging for Pharmaceutically Relevant Applications

  • Jelena M. JanjicEmail author
  • Sravan Kumar Patel
  • Christina Bagia
Part of the Methods in Molecular Biology book series (MIMB, volume 1444)


Optical imaging can be utilized for several pharmaceutical applications involving near-infrared fluorescent (NIRF) dyes or NIRF moiety-containing products. Especially during the early phases of product development, NIRF dyes can be used as surrogates for drugs and optical imaging methods can be utilized to optimize the pharmaceutical product properties based on dye entrapment efficiency, in vitro dye release, cellular uptake, and in vivo biodistribution. Based on in vivo accumulation, product efficacy and toxicity can be evaluated in the early development stage. Compared to visible fluorescent dyes, NIRF offers advantages such as low background from formulation excipients as well as biological components.

In this chapter, the utility of NIRF imaging methods for in vitro characterization (in vitro release and cellular uptake) and in vivo/ex vivo applicability of pharmaceutically relevant products is presented in detail. Specifically, the application of fluorescence imaging to characterize perfluorocarbon-based formulations for dye loading, in vitro release, cellular uptake, and in vivo imaging to assess target accumulation and biodistribution is discussed. These methods are widely applicable to other nanoparticle-based products involved in inflammation/cancer imaging and therapy. Overall, NIRF-based techniques are indispensible because they are relatively easy, fast, and cost effective to characterize and optimize pharmaceutical products at different stages of product development.

Key words

NIRF Nanoemulsions Hydrogels Biodistribution Inflammation 


  1. 1.
    McClements DJ (2012) Nanoemulsions versus microemulsions: terminology, differences, and similarities. Soft Matter 8(6):1719–1729CrossRefGoogle Scholar
  2. 2.
    Shakeel F, Shafiq S, Haq N, Alanazi FK, Alsarra IA (2012) Nanoemulsions as potential vehicles for transdermal and dermal delivery of hydrophobic compounds: an overview. Expert Opin Drug Deliv 9(8):953–974CrossRefPubMedGoogle Scholar
  3. 3.
    Kotta S, Khan AW, Pramod K, Ansari SH, Sharma RK, Ali J (2012) Exploring oral nanoemulsions for bioavailability enhancement of poorly water-soluble drugs. Expert Opin Drug Deliv 9(5):585–598CrossRefPubMedGoogle Scholar
  4. 4.
    McClements DJ, Rao J (2011) Food-grade nanoemulsions: formulation, fabrication, properties, performance, biological fate, and potential toxicity. Crit Rev Food Sci Nutr 51(4):285–330CrossRefPubMedGoogle Scholar
  5. 5.
    Rajpoot P, Pathak K, Bali V (2011) Therapeutic applications of nanoemulsion based drug delivery systems: a review of patents in last two decades. Recent Pat Drug Deliv Formul 5(2):163–172CrossRefPubMedGoogle Scholar
  6. 6.
    Sarker DK (2005) Engineering of nanoemulsions for drug delivery. Curr Drug Deliv 2(4):297–310CrossRefPubMedGoogle Scholar
  7. 7.
    Mitri K, Vauthier C, Huang N, Menas A, Ringard-Lefebvre C, Anselmi C, Stambouli M, Rosilio V, Vachon JJ, Bouchemal K (2012) Scale-up of nanoemulsion produced by emulsification and solvent diffusion. J Pharm Sci 101(11):4240–4247CrossRefPubMedGoogle Scholar
  8. 8.
    Muller RH, Harden D, Keck CM (2012) Development of industrially feasible concentrated 30% and 40% nanoemulsions for intravenous drug delivery. Drug Dev Ind Pharm 38(4):420–430CrossRefPubMedGoogle Scholar
  9. 9.
    Janjic JM, Shao P, Zhang S, Yang X, Patel SK, Bai M (2014) Perfluorocarbon nanoemulsions with fluorescent, colloidal and magnetic properties. Biomaterials 35(18):4958–4968CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Vasudeva K, Andersen K, Zeyzus-Johns B, Hitchens TK, Patel SK, Balducci A, Janjic JM, Pollock JA (2014) Imaging neuroinflammation in vivo in a neuropathic pain rat model with near-infrared fluorescence and (1)(9)F magnetic resonance. PLoS One 9(2):e90589CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Patel SK, Patrick MJ, Pollock JA, Janjic JM (2013) Two-color fluorescent (near-infrared and visible) triphasic perfluorocarbon nanoemuslions. J Biomed Opt 18(10):101312CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Balducci A, Wen Y, Zhang Y, Helfer BM, Hitchens TK, Meng WS, Wesa AK, Janjic JM (2013) A novel probe for the non-invasive detection of tumor-associated inflammation. Oncoimmunology 2(2):e23034CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Patel SK, Zhang Y, Pollock JA, Janjic JM (2013) Cyclooxgenase-2 inhibiting perfluoropoly (ethylene glycol) ether theranostic nanoemulsions-in vitro study. PLoS One 8(2):e55802CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    O'Hanlon CE, Amede KG, O’Hear MR, Janjic JM (2012) NIR-labeled perfluoropolyether nanoemulsions for drug delivery and imaging. J Fluor Chem 137:27–33CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Stoll G, Basse-Lusebrink T, Weise G, Jakob P (2012) Visualization of inflammation using (19) F-magnetic resonance imaging and perfluorocarbons. Wiley interdiscip Rev Nanomed Nanobiotechnol 4(4):438–447CrossRefPubMedGoogle Scholar
  16. 16.
    Kadayakkara DK, Beatty PL, Turner MS, Janjic JM, Ahrens ET, Finn OJ (2010) Inflammation driven by overexpression of the hypoglycosylated abnormal mucin 1 (MUC1) links inflammatory bowel disease and pancreatitis. Pancreas 39(4):510–515CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Weise G, Basse-Luesebrink TC, Wessig C, Jakob PM, Stoll G (2011) In vivo imaging of inflammation in the peripheral nervous system by (19)F MRI. Exp Neurol 229(2):494–501CrossRefPubMedGoogle Scholar
  18. 18.
    Janjic JM, Srinivas M, Kadayakkara DK, Ahrens ET (2008) Self-delivering nanoemulsions for dual fluorine-19 MRI and fluorescence detection. J Am Chem Soc 130(9):2832–2841CrossRefPubMedGoogle Scholar
  19. 19.
    Akers WJ, Kim C, Berezin M, Guo K, Fuhrhop R, Lanza GM, Fischer GM, Daltrozzo E, Zumbusch A, Cai X, Wang LV, Achilefu S (2011) Noninvasive photoacoustic and fluorescence sentinel lymph node identification using dye-loaded perfluorocarbon nanoparticles. ACS Nano 5(1):173–182CrossRefPubMedGoogle Scholar
  20. 20.
    Rapoport N, Nam KH, Gupta R, Gao Z, Mohan P, Payne A, Todd N, Liu X, Kim T, Shea J, Scaife C, Parker DL, Jeong EK, Kennedy AM (2011) Ultrasound-mediated tumor imaging and nanotherapy using drug loaded, block copolymer stabilized perfluorocarbon nanoemulsions. J Control Release 153(1):4–15CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Soman NR, Lanza GM, Heuser JM, Schlesinger PH, Wickline SA (2008) Synthesis and characterization of stable fluorocarbon nanostructures as drug delivery vehicles for cytolytic peptides. Nano Lett 8(4):1131–1136CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Soman NR, Baldwin SL, Hu G, Marsh JN, Lanza GM, Heuser JE, Arbeit JM, Wickline SA, Schlesinger PH (2009) Molecularly targeted nanocarriers deliver the cytolytic peptide melittin specifically to tumor cells in mice, reducing tumor growth. J Clin Invest 119(9):2830–2842CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Dewitte H, Geers B, Liang S, Himmelreich U, Demeester J, De Smedt SC, Lentacker I (2013) Design and evaluation of theranostic perfluorocarbon particles for simultaneous antigen-loading and (19)F-MRI tracking of dendritic cells. J Control Release 169(1-2):141–149CrossRefPubMedGoogle Scholar
  24. 24.
    Caruthers SD, Cyrus T, Winter PM, Wickline SA, Lanza GM (2009) Anti-angiogenic perfluorocarbon nanoparticles for diagnosis and treatment of atherosclerosis. Wiley Interdiscip Rev Nanomed Nanobiotechnol 1(3):311–323CrossRefPubMedGoogle Scholar
  25. 25.
    Lanza GM, Yu X, Winter PM, Abendschein DR, Karukstis KK, Scott MJ, Chinen LK, Fuhrhop RW, Scherrer DE, Wickline SA (2002) Targeted antiproliferative drug delivery to vascular smooth muscle cells with a magnetic resonance imaging nanoparticle contrast agent: implications for rational therapy of restenosis. Circulation 106(22):2842–2847CrossRefPubMedGoogle Scholar
  26. 26.
    Ravnikar M, Strukelj B, Obermajer N, Lunder M, Berlec A (2010) Engineered lactic acid bacterium Lactococcus lactis capable of binding antibodies and tumor necrosis factor alpha. Appl Environ Microbiol 76(20):6928–6932CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Janjic JM, Berlec A, Bagia C, Liu LS, Jeric I, Gach M, Janjic BM, Strukelj B (2016) NIR and MR imaging supported hydrogel based delivery system for anti-TNF alpha probiotic therapy of IBD. SPIE BiOS, 972309–972309-10Google Scholar
  28. 28.
    Patel SK, Beano W, Anderson C, Janjic JM (2015) Theranostic nanoemulsions for macrophage COX-2 inhibition in a murine inflammation model. 160 (1): 59–70Google Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Jelena M. Janjic
    • 1
    Email author
  • Sravan Kumar Patel
    • 1
  • Christina Bagia
    • 1
  1. 1.Graduate School of Pharmaceutical Sciences, Mylan School of PharmacyDuquesne UniversityPittsburghUSA

Personalised recommendations