Skip to main content

Liquid Chromatography-Tandem Mass Spectrometry to Define Sortase Cleavage Products

Part of the Methods in Molecular Biology book series (MIMB,volume 1440)

Abstract

Sortase enzymes have specific endopeptidase activity, cleaving within a defined pentapeptide sequence at the C-terminal end of their protein substrates. Here, we describe how monitoring sortase cleavage activity can be achieved using peptide substrates. Peptide cleavage can be readily analyzed by liquid chromatography/tandem mass spectrometry (LC/MS/MS), which allows for the precise definition of cleavage sites. This technique could be used to analyze the peptidase activity of any enzyme, and identify sites of cleavage within any peptide.

Key words

  • Sortase
  • Peptidase
  • Peptide cleavage
  • Liquid chromatography
  • Mass spectrometry

This is a preview of subscription content, access via your institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-1-4939-3676-2_8
  • Chapter length: 10 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   89.00
Price excludes VAT (USA)
  • ISBN: 978-1-4939-3676-2
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   119.99
Price excludes VAT (USA)
Hardcover Book
USD   169.99
Price excludes VAT (USA)
Fig. 1
Fig. 2

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Schneewind O, Missiakas D (2014) Sec-secretion and sortase-mediated anchoring of proteins in Gram-positive bacteria. Biochim Biophys Acta 1843:1687–1697

    CAS  CrossRef  PubMed  Google Scholar 

  2. Schneewind O, Missiakas DM (2012) Protein secretion and surface display in Gram-positive bacteria. Phil Trans R Soc B Biol Sci 367:1123–1139

    CAS  CrossRef  Google Scholar 

  3. Spirig T, Weiner EM, Clubb RT (2011) Sortase enzymes in Gram-positive bacteria. Mol Microbiol 82:1044–1059

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  4. Haft DH, Varghese N (2011) GlyGly-CTERM and rhombosortase: a C-terminal protein processing signal in a many-to-one pairing with a rhomboid family intramembrane serine protease. PLoS One 6:e28886

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  5. Abdul Halim MF, Pfeiffer F, Zou J et al (2013) Haloferax volcanii archaeosortase is required for motility, mating, and C-terminal processing of the S-layer glycoprotein. Mol Microbiol 88:1164–1175

    CAS  CrossRef  PubMed  Google Scholar 

  6. Mazmanian SK, Liu G, Ton-That H, Schneewind O (1999) Staphylococcus aureus sortase, an enzyme that anchors surface proteins to the cell wall. Science 285:760–763

    CAS  CrossRef  PubMed  Google Scholar 

  7. Ton-That H, Liu G, Mazmanian SK et al (1999) Purification and characterization of sortase, the transpeptidase that cleaves surface proteins of Staphylococcus aureus at the LPXTG motif. Proc Natl Acad Sci U S A 96:12424–12429

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  8. Ton-That H, Schneewind O (2004) Assembly of pili in Gram-positive bacteria. Trends Microbiol 12:228–234

    CAS  CrossRef  PubMed  Google Scholar 

  9. Ritzefeld M (2014) Sortagging: a robust and efficient chemoenzymatic ligation strategy. Chemistry 20:8516–8529

    CAS  CrossRef  PubMed  Google Scholar 

  10. Theile CS, Witte MD, Blom AEM et al (2013) Site-specific N-terminal labeling of proteins using sortase-mediated reactions. Nat Protoc 8:1800–1807

    CrossRef  PubMed  PubMed Central  Google Scholar 

  11. Haridas V, Sadanandan S, Dheepthi NU (2014) Sortase-based bio-organic strategies for macromolecular synthesis. Chembiochem 15:1857–1867

    CAS  CrossRef  PubMed  Google Scholar 

  12. Popp MW-L, Ploegh HL (2011) Making and breaking peptide bonds: protein engineering using sortase. Angew Chem Int Ed Engl 50:5024–5032

    CAS  CrossRef  PubMed  Google Scholar 

  13. Tsukiji S, Nagamune T (2009) Sortase-mediated ligation: a gift from Gram-positive bacteria to protein engineering. Chembiochem 10:787–798

    CAS  CrossRef  PubMed  Google Scholar 

  14. Williamson DJ, Webb ME, Turnbull WB (2014) Depsipeptide substrates for sortase-mediated N-terminal protein ligation. Nat Protoc 9:253–262

    CAS  CrossRef  PubMed  Google Scholar 

  15. Schmohl L, Schwarzer D (2014) Sortase-mediated ligations for the site-specific modification of proteins. Curr Opin Chem Biol 22:122–128

    CAS  CrossRef  PubMed  Google Scholar 

  16. Proft T (2010) Sortase-mediated protein ligation: an emerging biotechnology tool for protein modification and immobilisation. Biotechnol Lett 32:1–10

    CAS  CrossRef  PubMed  Google Scholar 

  17. Dorr BM, Ham HO, An C et al (2014) Reprogramming the specificity of sortase enzymes. Proc Natl Acad Sci U S A 111:13343–13348

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  18. Budzik JM, Marraffini LA, Souda P et al (2008) Amide bonds assemble pili on the surface of bacilli. Proc Natl Acad Sci U S A 105:10215–10220

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  19. Gaspar AH, Marraffini LA, Glass EM et al (2005) Bacillus anthracis sortase A (SrtA) anchors LPXTG motif-containing surface proteins to the cell wall envelope. J Bacteriol 187:4646–4655

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  20. Ton-That H, Mazmanian SK, Faull KF, Schneewind O (2000) Anchoring of surface proteins to the cell wall of Staphylococcus aureus. Sortase catalyzed in vitro transpeptidation reaction using LPXTG peptide and NH(2)-Gly(3) substrates. J Biol Chem 275:9876–9881

    CAS  CrossRef  PubMed  Google Scholar 

  21. Kruger RG, Otvos B, Frankel BA et al (2004) Analysis of the substrate specificity of the Staphylococcus aureus sortase transpeptidase SrtA. Biochemistry 43:1541–1551

    CAS  CrossRef  PubMed  Google Scholar 

  22. Maresso AW, Chapa TJ, Schneewind O (2006) Surface protein IsdC and sortase B are required for heme-iron scavenging of Bacillus anthracis. J Bacteriol 188:8145–8152

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  23. Duong A, Capstick DS, Di Berardo C et al (2012) Aerial development in Streptomyces coelicolor requires sortase activity. Mol Microbiol 83:992–1005

    CAS  CrossRef  PubMed  Google Scholar 

  24. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    CAS  CrossRef  PubMed  Google Scholar 

  25. Mazmanian SK, Ton-That H, Su K, Schneewind O (2002) An iron-regulated sortase anchors a class of surface protein during Staphylococcus aureus pathogenesis. Proc Natl Acad Sci U S A 99:2293–2298

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  26. Olson BJSC, Markwell J (2007) Assays for determination of protein concentration. Curr Protoc Protein Sci Chapter 3: Unit 3.4–3.4.29. Wiley

    Google Scholar 

  27. Ilangovan U, Ton-That H, Iwahara J et al (2001) Structure of sortase, the transpeptidase that anchors proteins to the cell wall of Staphylococcus aureus. Proc Natl Acad Sci U S A 98:6056–6061

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  28. Naik MT, Suree N, Ilangovan U et al (2006) Staphylococcus aureus sortase A transpeptidase. Calcium promotes sorting signal binding by altering the mobility and structure of an active site loop. J Biol Chem 281:1817–1826

    CAS  CrossRef  PubMed  Google Scholar 

  29. Necchi F, Nardi-Dei V, Biagini M et al (2011) Sortase A substrate specificity in GBS pilus 2a cell wall anchoring. PLoS One 6:e21317

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  30. Maresso AW, Schneewind O (2008) Sortase as a target of anti-infective therapy. Pharmacol Rev 60:128–141

    CAS  CrossRef  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by a CIHR grant (MOP—137004).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marie A. Elliot .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Duong, A., Koteva, K., Sexton, D.L., Elliot, M.A. (2016). Liquid Chromatography-Tandem Mass Spectrometry to Define Sortase Cleavage Products. In: Hong, HJ. (eds) Bacterial Cell Wall Homeostasis. Methods in Molecular Biology, vol 1440. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3676-2_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3676-2_8

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3674-8

  • Online ISBN: 978-1-4939-3676-2

  • eBook Packages: Springer Protocols