Visualization of HDAC9 Spatiotemporal Subcellular Localization in Primary Neuron Cultures

  • Noriyuki Sugo
  • Nobuhiko YamamotoEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1436)


Histone deacetylase (HDAC) 9 is one of class IIa HDACs which are expressed in developing cortical neurons. The translocation of HDAC9 from the nucleus to the cytoplasm is induced by neuronal activity during postnatal development, and is involved in regulation of various gene expressions. Visualization of HDAC9 subcellular localization is a powerful tool for studying activity-dependent gene expression. Here, we describe a time-lapse imaging method using fluorescent protein-tagged HDAC9 in dissociated cortical neurons. This method reveals dynamic HDAC9-mediated gene expression in response to various signals.

Key words

HDAC9 cDNA cloning Primary cortical neuron cultures Time-lapse imaging Transfection Fluorescent imaging 



This work was supported by JSPS KAKENHI Grant Nos. 16700286 and 18300105 (N.S. & N.Y.) and by The Nakajima Foundation (N.S.).


  1. 1.
    Yang XJ, Grégoire S (2005) Class II histone deacetylases: from sequence to function, regulation, and clinical implication. Mol Cell Biol 25(8):2873–2884CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Zhou X, Marks PA, Rifkind RA, Richon VM (2001) Cloning and characterization of a histone deacetylase, HDAC9. Proc Natl Acad Sci U S A 98(19):10572–10577CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Sparrow DB, Miska EA, Langley E, Reynaud-Deonauth S, Kotecha S, Towers N et al (1999) MEF-2 function is modified by a novel co-repressor, MITR. EMBO J 18(18):5085–5098CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Zhou X, Richon VM, Rifkind RA, Marks PA (2000) Identification of a transcriptional repressor related to the noncatalytic domain of histone deacetylases 4 and 5. Proc Natl Acad Sci U S A 97(3):1056–1061CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Zhang CL, McKinsey TA, Olson EN (2001) The transcriptional corepressor MITR is a signal-responsive inhibitor of myogenesis. Proc Natl Acad Sci U S A 98(13):7354–7359CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Méjat A, Ramond F, Bassel-Duby R, Khochbin S, Olson EN, Schaeffer L (2005) Histone deacetylase 9 couples neuronal activity to muscle chromatin acetylation and gene expression. Nat Neurosci 8(3):313–321CrossRefPubMedGoogle Scholar
  7. 7.
    Sugo N, Oshiro H, Takemura M, Kobayashi T, Kohno Y, Uesaka N et al (2010) Nucleocytoplasmic translocation of HDAC9 regulates gene expression and dendritic growth in developing cortical neurons. Eur J Neurosci 31(9):1521–1532PubMedGoogle Scholar
  8. 8.
    Chawla S, Vanhoutte P, Arnold FJ, Huang CL, Bading H (2003) Neuronal activity-dependent nucleocytoplasmic shuttling of HDAC4 and HDAC5. J Neurochem 85(1):151–159CrossRefPubMedGoogle Scholar
  9. 9.
    Niwa H, Yamamura K, Miyazaki J (1991) Efficient selection for high-expression transfectants with a novel eukaryotic vector. Gene 108(2):193–199CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Neuroscience Laboratories, Graduate School of Frontier BiosciencesOsaka UniversitySuitaJapan

Personalised recommendations