Skip to main content

Identification of Connexin43 Phosphorylation and S-Nitrosylation in Cultured Primary Vascular Cells

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1437))

Abstract

All connexins (Cx) proteins contain both highly ordered domains (i.e., 4 transmembrane domains) and primarily unstructured regions (i.e., n- and c-terminal domains). The c-terminal domains vary in length and amino acid composition from the shortest on Cx26 to the longest on Cx43. With the exception of Cx26, the c-terminal domains contain multiple sites for posttranslational modification (PTM) including serines (S), threonines (T), and tyrosines (Y) for phosphorylation or cysteines (C) for S-nitrosylation. These PTMs are critical for regulating cellular localization, protein–protein interactions, and channel functionality. There are several biochemical techniques that allow for the identification of these PTM including Western blotting and the “Biotin Switch” assay for nitrosylation. Quantitative analysis of Western blots can be achieved through use of secondary antibodies in the near infrared scale and high-resolution scanning on a fluorescent scanner.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Johnstone S, Isakson B, Locke D (2009) Biological and biophysical properties of vascular connexin channels. Int Rev Cell Mol Biol 278:69–118

    Article  PubMed  PubMed Central  Google Scholar 

  2. Straub AC, Johnstone SR, Heberlein KR et al (2010) Site-specific connexin phosphorylation is associated with reduced heterocellular communication between smooth muscle and endothelium. J Vasc Res 47:277–286

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Johnstone SR, Kroncke BM, Straub AC et al (2012) MAPK phosphorylation of connexin 43 promotes binding of cyclin E and smooth muscle cell proliferation. Circ Res 111:201–211

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Looft-Wilson RC, Billaud M, Johnstone SR et al (2012) Interaction between nitric oxide signaling and gap junctions: effects on vascular function. Biochim Biophys Acta 1818:1895–1902

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Solan JL, Lampe PD (2007) Key connexin 43 phosphorylation events regulate the gap junction life cycle. J Membr Biol 217:35–41

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Solan JL, Lampe PD (2014) Specific Cx43 phosphorylation events regulate gap junction turnover in vivo. FEBS Lett 588:1423–1429

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Le Gal L, Alonso F, Mazzolai L et al (2015) Interplay between connexin40 and nitric oxide signaling during hypertension. Hypertension 65:910–915

    Article  PubMed  Google Scholar 

  8. D'hondt C, Iyyathurai J, Vinken M et al (2013) Regulation of connexin- and pannexin-based channels by post-translational modifications. Biol Cell 105:373–398

    Article  PubMed  Google Scholar 

  9. Nishi H, Hashimoto K, Panchenko AR (2011) Phosphorylation in protein-protein binding: effect on stability and function. Structure 19:1807–1815

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Campbell AS, Johnstone SR, Baillie GS et al (2014) beta-Adrenergic modulation of myocardial conduction velocity: connexins vs. sodium current. J Mol Cell Cardiol 77:147–154

    Article  CAS  PubMed  Google Scholar 

  11. Johnstone SR, Ross J, Rizzo MJ et al (2009) Oxidized phospholipid species promote in vivo differential cx43 phosphorylation and vascular smooth muscle cell proliferation. Am J Pathol 175:916–924

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Solan JL, Lampe PD (2009) Connexin43 phosphorylation: structural changes and biological effects. Biochem J 419:261–272

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Berg AP, Talley EM, Manger JP et al (2004) Motoneurons express heteromeric TWIK-related acid-sensitive K+ (TASK) channels containing TASK-1 (KCNK3) and TASK-3 (KCNK9) subunits. J Neurosci 24:6693–6702

    Article  CAS  PubMed  Google Scholar 

  14. Straub AC, Billaud M, Johnstone SR et al (2011) Compartmentalized connexin 43 s-nitrosylation/denitrosylation regulates heterocellular communication in the vessel wall. Arterioscler Thromb Vasc Biol 31:399–407

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Meens MJ, Alonso F, Le Gal L et al (2015) Endothelial Connexin37 and Connexin40 participate in basal but not agonist-induced NO release. Cell Commun Signal 13:34

    Article  PubMed  PubMed Central  Google Scholar 

  16. Tannenbaum SR, White FM (2006) Regulation and specificity of S-nitrosylation and denitrosylation. ACS Chem Biol 1:615–618

    Article  CAS  PubMed  Google Scholar 

  17. Jaffrey S.R., Snyder S.H. (2001) The biotin switch method for the detection of S-nitrosylated proteins. Sci STKE 2001:pl1

    Google Scholar 

  18. Wang X, Kettenhofen NJ, Shiva S et al (2008) Copper dependence of the biotin switch assay: modified assay for measuring cellular and blood nitrosated proteins. Free Radic Biol Med 44:1362–1372

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the University of Glasgow, Lord Kelvin Adam Smith Fellowship (SRJ), by NIH grants R00 HL11290402, the Institute for Transfusion Medicine and the Hemophilia Center of Western Pennsylvania (ACS) and postdoctoral fellowships from the Canadian Institutes for Health Research and Alberta Innovates - Health Solutions (AWL).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Scott R. Johnstone .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Lohman, A.W., Straub, A.C., Johnstone, S.R. (2016). Identification of Connexin43 Phosphorylation and S-Nitrosylation in Cultured Primary Vascular Cells. In: Vinken, M., Johnstone, S. (eds) Gap Junction Protocols. Methods in Molecular Biology, vol 1437. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3664-9_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3664-9_7

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3662-5

  • Online ISBN: 978-1-4939-3664-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics