Skip to main content

Electroporation Loading and Dye Transfer: A Safe and Robust Method to Probe Gap Junctional Coupling

  • Protocol
  • First Online:
Gap Junction Protocols

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1437))

Abstract

Intercellular communication occurring via gap junction channels is considered a key mechanism for synchronizing physiological functions of cells and for the maintenance of tissue homeostasis. Gap junction channels are protein channels that are situated between neighboring cells and that provide a direct, yet selective route for the passage of small hydrophilic biomolecules and ions. Here, an electroporation method is described to load a localized area within an adherent cell monolayer with a gap junction-permeable fluorescent reporter dye. The technique results in a rapid and efficient labeling of a small patch of cells within the cell culture, without affecting cellular viability. Dynamic and quantitative information on gap junctional communication can subsequently be extracted by tracing the intercellular movement of the dye via time-lapse microscopy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wei Q, Huang H (2013) Insights into the role of cell-cell junctions in physiology and disease. Int Rev Cell Mol Biol 306:187–221

    Article  CAS  PubMed  Google Scholar 

  2. Herve JC, Derangeon M (2013) Gap-junction-mediated cell-to-cell communication. Cell Tissue Res 352:21–31

    Article  CAS  PubMed  Google Scholar 

  3. Maeda S, Tsukihara T (2011) Structure of the gap junction channel and its implications for its biological functions. Cell Mol Life Sci 68:1115–1129

    Article  CAS  PubMed  Google Scholar 

  4. Sohl G, Willecke K (2003) An update on connexin genes and their nomenclature in mouse and man. Cell Commun Adhes 10:173–180

    Article  PubMed  Google Scholar 

  5. Laird DW (2006) Life cycle of connexins in health and disease. Biochem J 394:527–543

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Reinecke H, Minami E, Virag JI et al (2004) Gene transfer of connexin43 into skeletal muscle. Hum Gene Ther 15:627–636

    Article  CAS  PubMed  Google Scholar 

  7. Alexander DB, Goldberg GS (2003) Transfer of biologically important molecules between cells through gap junction channels. Curr Med Chem 10:2045–2058

    Article  CAS  PubMed  Google Scholar 

  8. Elfgang C, Eckert R, Lichtenberg-Frate H et al (1995) Specific permeability and selective formation of gap junction channels in connexin-transfected HeLa cells. J Cell Biol 129:805–817

    Article  CAS  PubMed  Google Scholar 

  9. Bukauskas FF, Elfgang C, Willecke K et al (1995) Heterotypic gap junction channels (connexin26-connexin32) violate the paradigm of unitary conductance. Pflugers Arch 429:870–872

    Article  CAS  PubMed  Google Scholar 

  10. Kanaporis G, Mese G, Valiuniene L et al (2008) Gap junction channels exhibit connexin-specific permeability to cyclic nucleotides. J Gen Physiol 131:293–305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Goldberg GS, Moreno AP, Lampe PD (2002) Gap junctions between cells expressing connexin 43 or 32 show inverse permselectivity to adenosine and ATP. J Biol Chem 277:36725–36730

    Article  CAS  PubMed  Google Scholar 

  12. Kanaporis G, Brink PR, Valiunas V (2010) Gap junction permeability: selectivity for anionic and cationic probes. Am J Physiol 300:C600–C609

    Article  Google Scholar 

  13. Veenstra RD (1996) Size and selectivity of gap junction channels formed from different connexins. J Bioenerg Biomembr 28:327–337

    Article  CAS  PubMed  Google Scholar 

  14. Bevans CG, Kordel M, Rhee SK et al (1998) Isoform composition of connexin channels determines selectivity among second messengers and uncharged molecules. J Biol Chem 273:2808–2816

    Article  CAS  PubMed  Google Scholar 

  15. Bevans CG, Harris AL (1999) Direct high affinity modulation of connexin channel activity by cyclic nucleotides. J Biol Chem 274:3720–3725

    Article  CAS  PubMed  Google Scholar 

  16. Verselis VK, Srinivas M (2013) Connexin channel modulators and their mechanisms of action. Neuropharmacology 75:517–524

    Article  CAS  PubMed  Google Scholar 

  17. Abbaci M, Barberi-Heyob M, Blondel W et al (2008) Advantages and limitations of commonly used methods to assay the molecular permeability of gap junctional intercellular communication. Biotechniques 45:33–52

    Article  CAS  PubMed  Google Scholar 

  18. Maes M, Crespo Yanguas S, Willebrords J et al (2016) Models and methods for in vitro testing of hepatic gap junctional communication. Toxicol In Vitro 25:569–577

    Google Scholar 

  19. El-Fouly MH, Trosko JE, Chang CC (1987) Scrape-loading and dye transfer. A rapid and simple technique to study gap junctional intercellular communication. Exp Cell Res 168:422–430

    Article  CAS  PubMed  Google Scholar 

  20. Liu J, Siragam V, Chen J et al (2014) High-throughput measurement of gap junctional intercellular communication. Am J Physiol Heart Circ Physiol 306:H1708–H1713

    Article  CAS  PubMed  Google Scholar 

  21. Gehl J (2003) Electroporation: theory and methods, perspectives for drug delivery, gene therapy and research. Acta Physiol Scand 177:437–447

    Article  CAS  PubMed  Google Scholar 

  22. Teruel MN, Meyer T (1997) Electroporation-induced formation of individual calcium entry sites in the cell body and processes of adherent cells. Biophys J 73:1785–1796

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Ho SY, Mittal GS (1996) Electroporation of cell membranes: a review. Crit Rev Biotechnol 16:349–362

    Article  CAS  PubMed  Google Scholar 

  24. Weaver JC (1993) Electroporation: a general phenomenon for manipulating cells and tissues. J Cell Biochem 51:426–435

    Article  CAS  PubMed  Google Scholar 

  25. Kotnik T, Frey W, Sack M et al (2015) Electroporation-based applications in biotechnology. Trends Biotechnol 33:480–488

    Article  CAS  PubMed  Google Scholar 

  26. De Vuyst E, De Bock M, Decrock E et al (2008) In situ bipolar electroporation for localized cell loading with reporter dyes and investigating gap junctional coupling. Biophys J 94:469–479

    Article  PubMed  PubMed Central  Google Scholar 

  27. Decrock E, De Bock M, Wang N et al (2015) Electroporation loading and flash photolysis to investigate intra- and intercellular Ca2+ signaling. Cold Spring Harb Protoc 2015:239–249

    PubMed  Google Scholar 

  28. Decrock E, De Vuyst E, Vinken M et al (2009) Connexin 43 hemichannels contribute to the propagation of apoptotic cell death in a rat C6 glioma cell model. Cell Death Differ 16:151–163

    Article  CAS  PubMed  Google Scholar 

  29. Braet K, Aspeslagh S, Vandamme W et al (2003) Pharmacological sensitivity of ATP release triggered by photoliberation of inositol-1,4,5-trisphosphate and zero extracellular calcium in brain endothelial cells. J Cell Physiol 197:205–213

    Article  CAS  PubMed  Google Scholar 

  30. Braet K, Mabilde C, Cabooter L et al (2004) Electroporation loading and photoactivation of caged InsP3: tools to investigate the relation between cellular ATP release in response to intracellular InsP3 elevation. J Neurosci Methods 132:81–89

    Article  CAS  PubMed  Google Scholar 

  31. Braet K, Paemeleire K, D'Herde K et al (2001) Astrocyte-endothelial cell calcium signals conveyed by two signalling pathways. Eur J Neurosci 13:79–91

    Article  CAS  PubMed  Google Scholar 

  32. Monaco G, Decrock E, Akl H et al (2012) Selective regulation of IP3-receptor-mediated Ca2+ signaling and apoptosis by the BH4 domain of Bcl-2 versus Bcl-Xl. Cell Death Differ 19:295–309

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. De Bock M, Wang N, Bol M et al (2012) Connexin-43 hemichannels contribute to cytoplasmic Ca2+ oscillations by providing a bimodal Ca2+-dependent Ca2+-entry pathway. J Biol Chem 287:12250–12266

    Article  PubMed  PubMed Central  Google Scholar 

  34. Decrock E, Krysko DV, Vinken M et al (2012) Transfer of IP3 through gap junctions is critical, but not sufficient, for the spread of apoptosis. Cell Death Differ 19:947–957

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Vervliet T, Lemmens I, Vandermarliere E et al (2015) Ryanodine receptors are targeted by anti-apoptotic Bcl-XL involving its BH4 domain and Lys87 from its BH3 domain. Sci Rep 5:9641

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Monaco G, Decrock E, Arbel N et al (2015) The BH4 domain of anti-apoptotic Bcl-XL, but not that of the related Bcl-2, limits the voltage-dependent anion channel 1 (VDAC1)-mediated transfer of pro-apoptotic Ca2+ signals to mitochondria. J Biol Chem 290:9150–9161

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Vervliet T, Decrock E, Molgo J et al (2014) Bcl-2 binds to and inhibits ryanodine receptors. J Cell Sci 127:2782–2792

    Article  CAS  PubMed  Google Scholar 

  38. Monaco G, Decrock E, Nuyts K et al (2013) Alpha-helical destabilization of the Bcl-2-BH4-domain peptide abolishes its ability to inhibit the IP3 receptor. PLoS One 8:e73386

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Leybaert L, Sanderson MJ (2001) Intercellular calcium signaling and flash photolysis of caged compounds: a sensitive method to evaluate gap junctional coupling. Methods Mol Biol 154:407–430

    CAS  PubMed  Google Scholar 

  40. Decrock E, De Bock M, Wang N et al (2015) Electroporation loading of membrane-impermeable molecules to investigate intra- and intercellular Ca2+ signaling. Cold Spring Harb Protoc 2015:284–288

    PubMed  Google Scholar 

  41. Wegener J, Keese CR, Giaever I (2002) Recovery of adherent cells after in situ electroporation monitored electrically. Biotechniques 33:348, 350, 352 passim

    CAS  PubMed  Google Scholar 

  42. Kotnik T, Pucihar G, Rebersek M et al (2003) Role of pulse shape in cell membrane electropermeabilization. Biochim Biophys Acta 1614:193–200

    Article  CAS  PubMed  Google Scholar 

  43. Fyrberg A, Lotfi K (2010) Optimization and evaluation of electroporation delivery of siRNA in the human leukemic CEM cell line. Cytotechnology 62:497–507

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Melkonyan H, Sorg C, Klempt M (1996) Electroporation efficiency in mammalian cells is increased by dimethyl sulfoxide (DMSO). Nucleic Acids Res 24:4356–4357

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Yoshizawa T, Watanabe S, Hirose M et al (1997) Dimethylsulfoxide maintains intercellular communication by preserving the gap junctional protein connexin32 in primary cultured hepatocyte doublets from rats. J Gastroenterol Hepatol 12:325–330

    Article  CAS  PubMed  Google Scholar 

  46. Cegovnik U, Novakovic S (2004) Setting optimal parameters for in vitro electrotransfection of B16F1, SA1, LPB, SCK, L929 and CHO cells using predefined exponentially decaying electric pulses. Bioelectrochemistry 62:73–82

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work is supported by the Fund for Scientific Research Flanders (FWO-Vlaanderen), Belgium (grants G.0298.11, G.0571.12, G.0A54.13, and G.0320.15), the Special Research Fund (BOF) of Ghent University (grant 01IO8314), and the Interuniversity Attraction Poles Program (Belgian Science Policy, project P7/10).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luc Leybaert .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Decrock, E., De Bock, M., De Baere, D., Hoorelbeke, D., Wang, N., Leybaert, L. (2016). Electroporation Loading and Dye Transfer: A Safe and Robust Method to Probe Gap Junctional Coupling. In: Vinken, M., Johnstone, S. (eds) Gap Junction Protocols. Methods in Molecular Biology, vol 1437. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3664-9_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3664-9_11

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3662-5

  • Online ISBN: 978-1-4939-3664-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics