Simple, Efficient CRISPR-Cas9-Mediated Gene Editing in Mice: Strategies and Methods

  • Benjamin E. Low
  • Peter M. Kutny
  • Michael V. WilesEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1438)


Genetic modification of almost any species is now possible using approaches based on targeted nucleases. These novel tools now bypass previous limited species windows, allowing precision nucleotide modification of the genome at high efficiency, rapidly and economically. Here we focus on the modification of the mouse genome; the mouse, with its short generation time and comparatively low maintenance/production costs is the perfect mammal with which to probe the genome to understand its functions and complexities. Further, using targeted nucleases combined with homologous recombination, it is now possible to precisely tailor the genome, creating models of human diseases and conditions directly and efficiently in zygotes derived from any mouse strain. Combined these approaches make it possible to sequentially and progressively refine mouse models to better reflect human disease, test and develop therapeutics. Here, we briefly review the strategies involved in designing targeted nucleases (sgRNAs) providing solutions and outlining in detail the practical processes involved in precision targeting and modification of the mouse genome and the establishing of new precision genetically modified mouse lines.

Key words

Cas9 CRISPR Genome editing RNA-guided endonucleases Genetic engineering Mouse model Microinjection transgenic Humanization Transgenic sgRNA 



This work was done in close cooperation with The Jackson Laboratory microinjection team. We also fully acknowledge the help and excellent assistance of Cindy Avery and Deb Woodworth for genotyping and animal maintenance, plus discussions regarding CRISPR with Drs. Vishnu Hosur, Wenning Qin, and Gabriele Proetzel. Funding for this work was provided by the National Institutes of Health Grant OD011190 (M.V.W.) and The Jackson Laboratory. We also give our thanks to Addgene for supplying many of the plasmids used in our studies.


  1. 1.
    Doetschman T, Gregg RG, Maeda N, Hooper ML, Melton DW, Thompson S, Smithies O (1987) Targetted correction of a mutant HPRT gene in mouse embryonic stem cells. Nature 330:576–578CrossRefPubMedGoogle Scholar
  2. 2.
    Capecchi MR (1989) Altering the genome by homologous recombination. Science 244:1288–1292CrossRefPubMedGoogle Scholar
  3. 3.
    Gaj T, Gersbach CA, Barbas Iii CF (2013) ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. Trends Biotechnol 31:397–405CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Hsu PD, Lander ES, Zhang F (2014) Development and applications of CRISPR-Cas9 for genome engineering. Cell 157:1262–1278CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Singh P, Schimenti JC, Bolcun-Filas E (2015) A mouse geneticist’s practical guide to CRISPR applications. Genetics 199:1–15CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Carbery ID, Ji D, Harrington A, Brown V, Weinstein EJ, Liaw L, Cui X (2010) Targeted genome modification in mice using zinc-finger nucleases. Genetics 186:451–459, 10.1534/genetics.110.117002CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Orlando SJ, Santiago Y, DeKelver RC, Freyvert Y, Boydston EA, Moehle EA, Choi VM, Gopalan SM, Lou JF, Li J, Miller JC, Holmes MC, Gregory PD, Urnov FD, Cost GJ (2010) Zinc-finger nuclease-driven targeted integration into mammalian genomes using donors with limited chromosomal homology. Nucleic Acids Res 38:e152CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Cermak T, Doyle EL, Christian M, Wang L, Zhang Y, Schmidt C, Baller JA, Somia NV, Bogdanove AJ, Voytas DF (2011) Efficient design and assembly of custom TALEN and other TAL effector-based constructs for DNA targeting. Nucleic Acids Res 39:e82CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Bedell VM, Wang Y, Campbell JM, Poshusta TL, Starker CG, Krug RG 2nd, Tan W, Penheiter SG, Ma AC, Leung AY, Fahrenkrug SC, Carlson DF, Voytas DF, Clark KJ, Essner JJ, Ekker SC (2012) In vivo genome editing using a high-efficiency TALEN system. Nature 491(7422):114–118CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Ishino Y, Shinagawa H, Makino K, Amemura M, Nakata A (1987) Nucleotide sequence of the iap gene, responsible for alkaline phosphatase isozyme conversion in Escherichia coli, and identification of the gene product. J Bacteriol 169:5429–5433PubMedPubMedCentralGoogle Scholar
  11. 11.
    Horvath P, Barrangou R (2010) CRISPR/Cas, the immune system of bacteria and archaea. Science 327:167–170CrossRefPubMedGoogle Scholar
  12. 12.
    Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E (2012) A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337:816–821CrossRefPubMedGoogle Scholar
  13. 13.
    Doudna JA, Charpentier E (2014) Genome editing. The new frontier of genome engineering with CRISPR-Cas9. Science 346:1258096. doi: 10.1126/science.1258096 CrossRefPubMedGoogle Scholar
  14. 14.
    Esvelt KM, Mali P, Braff JL, Moosburner M, Yaung SJ, Church GM (2013) Orthogonal Cas9 proteins for RNA-guided gene regulation and editing. Nat Methods 10:1116–1121CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Kleinstiver BP, Prew MS, Tsai SQ, Topkar V, Nguyen NT, Zheng Z, Gonzales APW, Li Z, Peterson RT, Yeh JRJ, Aryee MJ, Joung JK (2015) Engineered CRISPR-Cas9 nucleases with altered PAM specificities. Nature 523:481–485CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Shmakov S, Abudayyeh OO, Makarova KS, Wolf YI, Gootenberg JS, Semenova E, Minakhin L, Joung J, Konermann S, Severinov K, Zhang F, Koonin EV (2015) Discovery and functional characterization of diverse class 2 CRISPR-Cas Systems. Mol Cell 60:1–13CrossRefGoogle Scholar
  17. 17.
    Zetsche B, Gootenberg JS, Abudayyeh OO, Slaymaker IM, Makarova KS, Essletzbichler P, Volz SE, Joung J, van der Oost J, Regev A, Koonin EV, Zhang F (2015) Cpf1 is a single RNA-guided endonuclease of a novel Class 2 CRISPRCas system. Cell 163:759–771CrossRefPubMedGoogle Scholar
  18. 18.
    Nishimasu H, Ran FA, Hsu PD, Konermann S, Shehata SI, Dohmae N, Ishitani R, Zhang F, Nureki O (2014) Crystal Structure of Cas9 in Complex with Guide RNA and Target DNA. Cell 156:935–949CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Sternberg SH, Redding S, Jinek M, Greene EC, Doudna JA (2014) DNA interrogation by the CRISPR RNA-guided endonuclease Cas9. Nature 507:62–67CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Jinek M, East A, Cheng A, Lin S, Ma E, Doudna J (2013) RNA-programmed genome editing in human cells. Elife 2:e00471. doi: 10.7554/eLife.00471 CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Bétermier M, Bertrand P, Lopez BS (2014) Is non-homologous end-joining really an inherently error-prone process? PLoS Genet 10:e1004086. doi: 10.1371/journal.pgen.1004086 CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Rogakou EP, Pilch DR, Orr AH, Ivanova VS, Bonner WM (1998) DNA double-stranded breaks induce histone H2AX phosphorylation on serine 139. J Biol Chem 273:5858–5868CrossRefPubMedGoogle Scholar
  23. 23.
    Cong L, Ran FA, Cox D, Lin S, Barretto R, Habib N, Hsu PD, Wu X, Jiang W, Marraffini LA, Zhang F (2013) Multiplex genome engineering using CRISPR/Cas systems. Science 339:819–823CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Jiang W, Bikard D, Cox D, Zhang F, Marraffini LA (2013) RNA-guided editing of bacterial genomes using CRISPR-Cas systems. Nat Biotechnol 31:233–239CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Liang P, Xu Y, Zhang X, Ding C, Huang R, Zhang Z, Lv J, Xie X, Chen Y, Li Y, Sun Y, Bai Y, Songyang Z, Ma W, Zhou C, Huang J (2015) CRISPR/Cas9-mediated gene editing in human tripronuclear zygotes. Protein Cell 6:363–372CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Yang H, Wang H, Jaenisch R (2014) Generating genetically modified mice using CRISPR/Cas-mediated genome engineering. Nat Protoc 9:1956–1968CrossRefPubMedGoogle Scholar
  27. 27.
    Chen X, Xu F, Zhu C, Ji J, Zhou X, Feng X, Guang S (2014) Dual sgRNA-directed gene knockout using CRISPR/Cas9 technology in Caenorhabditis elegans. Sci Rep 4:7581. doi: 10.1038/srep07581 CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Dicarlo JE, Norville JE, Mali P, Rios X, Aach J, Church GM (2013) Genome engineering in Saccharomyces cerevisiae using CRISPR-Cas systems. Nucleic Acids Res 41:4336–4343CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Wang H, Yang H, Shivalila CS, Dawlaty MM, Cheng AW, Zhang F, Jaenisch R (2013) One-step generation of mice carrying mutations in multiple genes by CRISPR/Cas-mediated genome engineering. Cell 153:910–918CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Yang H, Wang H, Shivalila CS, Cheng AW, Shi L, Jaenisch R (2013) One-step generation of mice carrying reporter and conditional alleles by CRISPR/Cas-mediated genome engineering. Cell 154:1370–1379CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Mali P, Aach J, Stranges PB, Esvelt KM, Moosburner M, Kosuri S, Yang L, Church GM (2013) CAS9 transcriptional activators for target specificity screening and paired nickases for cooperative genome engineering. Nat Biotechnol 31:833–838CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Hsu PD, Scott DA, Weinstein JA, Ran FA, Konermann S, Agarwala V, Li Y, Fine EJ, Wu X, Shalem O, Cradick TJ, Marraffini LA, Bao G, Zhang F (2013) DNA targeting specificity of RNA-guided Cas9 nucleases. Nat Biotechnol 31:827–832CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Fu Y, Foden JA, Khayter C, Maeder ML, Reyon D, Joung JK, Sander JD (2013) High-frequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells. Nat Biotechnol 31(9):822–826CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Wu X, Scott DA, Kriz AJ, Chiu AC, Hsu PD, Dadon DB, Cheng AW, Trevino AE, Konermann S, Chen S, Jaenisch R, Zhang F, Sharp PA (2014) Genome-wide binding of the CRISPR endonuclease Cas9 in mammalian cells. Nat Biotechnol 32:670–676CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Lin Y, Cradick TJ, Brown MT, Deshmukh H, Ranjan P, Sarode N, Wile BM, Vertino PM, Stewart FJ, Bao G (2014) CRISPR/Cas9 systems have off-target activity with insertions or deletions between target DNA and guide RNA sequences. Nucleic Acids Res 42:7473–7485CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Tsai SQ, Zheng Z, Nguyen NT, Liebers M, Topkar VV, Thapar V, Wyvekens N, Khayter C, Iafrate AJ, Le LP, Aryee MJ, Joung JK (2015) GUIDE-seq enables genome-wide profiling of off-target cleavage by CRISPR-Cas nucleases. Nat Biotechnol 33:187–198CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Gabriel R, Von Kalle C, Schmidt M (2015) Mapping the precision of genome editing. Nat Biotechnol 33(2):150–152. doi: 10.1038/nbt.3142 CrossRefPubMedGoogle Scholar
  38. 38.
    Prykhozhij SV, Rajan V, Gaston D, Berman JN (2015) CRISPR multitargeter: a web tool to find common and unique CRISPR single guide RNA targets in a set of similar sequences. PLoS One 10:e0119372, 10.1371/journal.pone.0119372CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Wiles MV, Qin W, Cheng A, Wang H (2015) CRISPR-Cas9 mediated genome editing and guide RNA design. Mamm Genome 26:501–510CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Ran FA, Hsu PD, Lin CY, Gootenberg JS, Konermann S, Trevino AE, Scott DA, Inoue A, Matoba S, Zhang Y, Zhang F (2013) Double nicking by RNA-guided CRISPR Cas9 for enhanced genome editing specificity. Cell 154:1380–1389CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Guilinger JP, Thompson DB, Liu DR (2014) Fusion of catalytically inactive Cas9 to FokI nuclease improves the specificity of genome modification. Nat Biotechnol 32:577–582CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Tsai SQ, Wyvekens N, Khayter C, Foden JA, Thapar V, Reyon D, Goodwin MJ, Aryee MJ, Joung JK (2014) Dimeric CRISPR RNA-guided FokI nucleases for highly specific genome editing. Nat Biotechnol 32:569–576CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Fu Y, Sander JD, Reyon D, Cascio VM, Joung JK (2014) Improving CRISPR-Cas nuclease specificity using truncated guide RNAs. Nat Biotechnol 32:279–284CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Montagutelli X (2000) Effect of the genetic background on the phenotype of mouse mutations. J Am Soc Nephrol 11:S101–S105PubMedGoogle Scholar
  45. 45.
    Nakagawa Y, Sakuma T, Sakamoto T, Ohmuraya M, Nakagata N, Yamamoto T (2015) Production of knockout mice by DNA microinjection of various CRISPR/Cas9 vectors into freeze-thawed fertilized oocytes. BMC Biotechnol 15:33CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Tanaka Y, Yamada Y, Ishitsuka Y, Matsuo M, Shiraishi K, Wada K, Uchio Y, Kondo Y, Takeo T, Nakagata N, Higashi T, Motoyama K, Arima H, Mochinaga S, Higaki K, Ohno K, Irie T (2015) Efficacy of 2-hydroxypropyl-β-cyclodextrin in Niemann-Pick disease type C model mice and its pharmacokinetic analysis in a patient with the disease. Biol Pharm Bull 38:844–851CrossRefPubMedGoogle Scholar
  47. 47.
    Festing M (1999) Warning: the use of heterogeneous mice may seriously damage your research. Neurobiol Aging 20(2):237–244, discussion 245–236CrossRefPubMedGoogle Scholar
  48. 48.
    Festing M (2004) The choice of animal model and reduction. Altern Lab Anim 32(Suppl 2):59–64PubMedGoogle Scholar
  49. 49.
    Shen B, Zhang J, Wu H, Wang J, Ma K, Li Z, Zhang X, Zhang P, Huang X (2013) Generation of gene-modified mice via Cas9/RNA-mediated gene targeting. Cell Res 23:720–723CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Qin W, Dion SL, Kutny PM, Zhang Y, Cheng A, Jillette NL, Malhotra A, Geurts AM, Chen YG, Wang H (2015) Efficient CRISPR/Cas9-mediated genome editing in mice by zygote electroporation of nuclease. Genetics 200:423–430CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Li D, Qiu Z, Shao Y, Chen Y, Guan Y, Liu M, Li Y, Gao N, Wang L, Lu X, Zhao Y (2013) Heritable gene targeting in the mouse and rat using a CRISPR-Cas system. Nat Biotechnol 31:681–683CrossRefPubMedGoogle Scholar
  52. 52.
    Chen F, Pruett-Miller SM, Huang Y, Gjoka M, Duda K, Taunton J, Collingwood TN, Frodin M, Davis GD (2011) High-frequency genome editing using ssDNA oligonucleotides with zinc-finger nucleases. Nat Methods 8:753–755CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Zhang L, Jia R, Palange NJ, Satheka AC, Togo J, An Y, Humphrey M, Ban L, Ji Y, Jin H, Feng X, Zheng Y (2015) Large genomic fragment deletions and insertions in mouse using CRISPR/Cas9. PLoS One 10:e0120396. doi: 10.1371/journal.pone.0120396 CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Zhang Y, Ge X, Yang F, Zhang L, Zheng J, Tan X, Jin ZB, Qu J, Gu F (2014) Comparison of non-canonical PAMs for CRISPR/Cas9-mediated DNA cleavage in human cells. Sci Rep 4:5405. doi: 10.1038/srep05405 PubMedPubMedCentralGoogle Scholar
  55. 55.
    Ostermeier GC, Wiles MV, Farley JS, Taft RA (2008) Conserving, distributing and managing genetically modified mouse lines by sperm cryopreservation. PLoS One 3(7):e2792CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Wiles MV, Taft RA (2010) The sophisticated mouse: Protecting a precious reagent. Methods Mol Biol 602:23–36CrossRefPubMedGoogle Scholar
  57. 57.
    Chu VT, Weber T, Wefers B, Wurst W, Sander S, Rajewsky K, Kühn R (2015) Increasing the efficiency of homology-directed repair for CRISPR-Cas9-induced precise gene editing in mammalian cells. Nat Biotechnol 33:543–548CrossRefPubMedGoogle Scholar
  58. 58.
    Maruyama T, Dougan SK, Truttmann MC, Bilate AM, Ingram JR, Ploegh HL (2015) Increasing the efficiency of precise genome editing with CRISPR-Cas9 by inhibition of nonhomologous end joining. Nat Biotechnol 33:538–542CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Chapman KM, Medrano GA, Jaichander P, Chaudhary J, Waits AE, Nobrega MA, Hotaling JM, Ober C, Hamra FK (2015) Targeted germline modifications in rats using CRISPR/Cas9 and spermatogonial stem cells. Cell Rep 10:1828–1835CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Zhou X, Xin J, Fan N, Zou Q, Huang J, Ouyang Z, Zhao Y, Zhao B, Yi X, Guo L, Esteban MA, Zeng Y, Yang H, Lai L (2015) Generation of CRISPR/Cas9-mediated gene-targeted pigs via somatic cell nuclear transfer. Cell Mol Life Sci 72:1175–1184CrossRefPubMedGoogle Scholar
  61. 61.
    Zambrowicz BP, Imamoto A, Fiering S, Herzenberg LA, Kerr WG, Soriano P (1997) Disruption of overlapping transcripts in the rosa beta-geo 26 gene trap strain leads to widespread expression of beta-galactosidase in mouse embryos and hematopoietic cells. Proc Natl Acad Sci U S A 94:3789–3794CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Soriano P (1999) Generalized lacZ expression with the ROSA26 Cre reporter strain. Nat Genet 21:70–71CrossRefPubMedGoogle Scholar
  63. 63.
    Tan W, Carlson DF, Lancto CA, Garbe JR, Webster DA, Hackett PB, Fahrenkrug SC (2013) Efficient nonmeiotic allele introgression in livestock using custom endonucleases. Proc Natl Acad Sci U S A 110:16526–16531CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Fineran PC, Dy RL (2014) Gene regulation by engineered CRISPR-Cas systems. Curr Opin Microbiol 18:83–89CrossRefPubMedGoogle Scholar
  65. 65.
    Akeson AL, Wetzel B, Thompson FY, Brooks SK, Paradis H, Gendron RL, Greenberg JM (2000) Embryonic vasculogenesis by endothelial precursor cells derived from lung mesenchyme. Dev Dyn 217:11–23CrossRefPubMedGoogle Scholar
  66. 66.
    Oehler D, Poehlein A, Leimbach A, Müller N, Daniel R, Gottschalk G, Schink B (2012) Genome-guided analysis of physiological and morphological traits of the fermentative acetate oxidizer Thermacetogenium phaeum. BMC Genomics 13:723CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Chylinski K, Makarova KS, Charpentier E, Koonin EV (2014) Classification and evolution of type II CRISPR-Cas systems. Nucleic Acids Res 42:6091–6105CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Hou Z, Zhang Y, Propson NE, Howden SE, Chu LF, Sontheimer EJ, Thomson JA (2013) Efficient genome engineering in human pluripotent stem cells using Cas9 from Neisseria meningitidis. Proc Natl Acad Sci U S A 110:15644–15649CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Kim D, Bae S, Park J, Kim E, Kim S, Yu HR, Hwang J, Kim JI, Kim JS (2015) Digenome-seq: genome-wide profiling of CRISPR-Cas9 off-target effects in human cells. Nat Methods 12:237–243CrossRefPubMedGoogle Scholar
  70. 70.
    Mandal PK, Ferreira LMR, Collins R, Meissner TB, Boutwell CL, Friesen M, Vrbanac V, Garrison BS, Stortchevoi A, Bryder D, Musunuru K, Brand H, Tager AM, Allen TM, Talkowski ME, Rossi DJ, Cowan CA (2014) Efficient ablation of genes in human hematopoietic stem and effector cells using CRISPR/Cas9. Cell Stem Cell 15:643–652CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Chen B, Gilbert LA, Cimini BA, Schnitzbauer J, Zhang W, Li GW, Park J, Blackburn EH, Weissman JS, Qi LS, Huang B (2013) Dynamic imaging of genomic loci in living human cells by an optimized CRISPR/Cas system. Cell 155(7):1479–1491CrossRefPubMedPubMedCentralGoogle Scholar
  72. 72.
    Lennox KA, Sabel JL, Johnson MJ, Moreira BG, Fletcher CA, Rose SD, Behlke MA, Laikhter AL, Walder JA, Dagle JM (2006) Characterization of modified antisense oligonucleotides in Xenopus laevis embryos. Oligonucleotides 16:26–42CrossRefPubMedGoogle Scholar
  73. 73.
    Bassett AR, Tibbit C, Ponting CP, Liu JL (2014) Highly efficient targeted mutagenesis of drosophila with the CRISPR/Cas9 system. Cell Rep 6:1178–1179CrossRefGoogle Scholar
  74. 74.
    Luo C, Zuñiga J, Edison E, Palla S, Dong W, Parker-Thornburg J (2011) Superovulation strategies for 6 commonly used mouse strains. J Am Assoc Lab Anim Sci 50:471–478PubMedPubMedCentralGoogle Scholar
  75. 75.
    Behringer R, Gertsensten M, Vintersten K, Nagy A (2013) Manipulating the Mouse Embryo; A Laboratory manual, 4th edn. Cold Spring Harbor Press, New YorkGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Benjamin E. Low
    • 1
  • Peter M. Kutny
    • 1
  • Michael V. Wiles
    • 1
    Email author
  1. 1.The Jackson LaboratoryBar HarborUSA

Personalised recommendations