Skip to main content

Neuromuscular Disease Models and Analysis

  • Protocol
  • First Online:
Book cover Mouse Models for Drug Discovery

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1438))

Abstract

Neuromuscular diseases can affect the survival of peripheral neurons, their axons extending to peripheral targets, their synaptic connections onto those targets, or the targets themselves. Examples include motor neuron diseases such as Amyotrophic Lateral Sclerosis, peripheral neuropathies such as Charcot-Marie-Tooth diseases, myasthenias, and muscular dystrophies. Characterizing these phenotypes in mouse models requires an integrated approach, examining both the nerve and muscle histologically, anatomically, and functionally by electrophysiology. Defects observed at these levels can be related back to onset, severity, and progression, as assessed by “Quality of life measures” including tests of gross motor performance such as gait or grip strength. This chapter describes methods for assessing neuromuscular disease models in mice, and how interpretation of these tests can be complicated by the inter-relatedness of the phenotypes.

This chapter is reproduced from the previous edition. The methods and approaches described have not changed and therefore the chapter remains relevant; however, additional mouse models are emerging constantly and the lists provided should not be considered comprehensive in 2016

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hegedus J, Putman CT, Gordon T (2007) Time course of preferential motor unit loss in the SOD1 G93A mouse model of amyotrophic lateral sclerosis. Neurobiol Dis 28:154–164

    Article  CAS  PubMed  Google Scholar 

  2. Grohmann K, Schuelke M, Diers A, Hoffmann K, Lucke B, Adams C et al (2001) Mutations in the gene encoding immunoglobulin mu-binding protein 2 cause spinal muscular atrophy with respiratory distress type 1. Nat Genet 29:75–77

    Article  CAS  PubMed  Google Scholar 

  3. Seburn KL, Nangle LA, Cox GA, Schimmel P, Burgess RW (2006) An active dominant mutation of glycyl-tRNA synthetase causes neuropathy in a Charcot-Marie-Tooth 2D mouse model. Neuron 51:715–726

    Article  CAS  PubMed  Google Scholar 

  4. Court FA, Sherman DL, Pratt T, Garry EM, Ribchester RR, Cottrell DF et al (2004) Restricted growth of Schwann cells lacking Cajal bands slows conduction in myelinated nerves. Nature 431:191–195

    Article  CAS  PubMed  Google Scholar 

  5. Son YJ, Thompson WJ (1995) Nerve sprouting in muscle is induced and guided by processes extended by Schwann cells. Neuron 14:133–141

    Article  CAS  PubMed  Google Scholar 

  6. Son YJ, Thompson WJ (1995) Schwann cell processes guide regeneration of peripheral axons. Neuron 14:125–132

    Article  CAS  PubMed  Google Scholar 

  7. Enomoto H, Araki T, Jackman A, Heuckeroth RO, Snider WD, Johnson EM Jr et al (1998) GFR alpha1-deficient mice have deficits in the enteric nervous system and kidneys. Neuron 21:317–324

    Article  CAS  PubMed  Google Scholar 

  8. Patton BL, Cunningham JM, Thyboll J, Kortesmaa J, Westerblad H, Edstrom L et al (2001) Properly formed but improperly localized synaptic specializations in the absence of laminin alpha4. Nat Neurosci 4:597–604

    Article  CAS  PubMed  Google Scholar 

  9. Pun S, Santos AF, Saxena S, Xu L, Caroni P (2006) Selective vulnerability and pruning of phasic motoneuron axons in motoneuron disease alleviated by CNTF. Nat Neurosci 9:408–419

    Article  CAS  PubMed  Google Scholar 

  10. Morgan D, Munireddy S, Alamed J, Deleon J, Diamond DM, Bickford P et al (2008) Apparent behavioral benefits of Tau overexpression in P301L Tau transgenic mice. J Alzheimers Dis 15:605–614

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Stam NC, Nithianantharajah J, Howard ML, Atkin JD, Cheema SS, Hannan AJ (2008) Sex-specific behavioural effects of environmental enrichment in a transgenic mouse model of amyotrophic lateral sclerosis. Eur J Neurosci 28:717–723

    Article  PubMed  Google Scholar 

  12. Turgeman T, Hagai Y, Huebner K, Jassal DS, Anderson JE, Genin O et al (2008) Prevention of muscle fibrosis and improvement in muscle performance in the mdx mouse by halofuginone. Neuromuscul Disord 18:857–868

    Article  PubMed  Google Scholar 

  13. Bohlen M, Cameron A, Metten P, Crabbe JC, Wahlsten D (2009) Calibration of rotational acceleration for the rotarod test of rodent motor coordination. J Neurosci Methods 178(1):10–14

    Article  PubMed  PubMed Central  Google Scholar 

  14. Rustay NR, Wahlsten D, Crabbe JC (2003) Influence of task parameters on rotarod performance and sensitivity to ethanol in mice. Behav Brain Res 141:237–249

    Article  CAS  PubMed  Google Scholar 

  15. Bautmans I, Mets T (2005) A fatigue resistance test for elderly persons based on grip strength: reliability and comparison with healthy young subjects. Aging Clin Exp Res 17:217–222

    Article  PubMed  Google Scholar 

  16. Fernagut PO, Diguet E, Labattu B, Tison F (2002) A simple method to measure stride length as an index of nigrostriatal dysfunction in mice. J Neurosci Methods 113:123–130

    Article  PubMed  Google Scholar 

  17. Wooley CM, Sher RB, Kale A, Frankel WN, Cox GA, Seburn KL (2005) Gait analysis detects early changes in transgenic SOD1(G93A) mice. Muscle Nerve 32:43–50

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Wooley CM, Xing S, Burgess RW, Cox GA, Seburn KL (2009) Age, experience and genetic background influence treadmill walking in mice. Physiol Behav 96(2):350–361

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Brooks SV, Faulkner JA, McCubbrey DA (1990) Power outputs of slow and fast skeletal muscles of mice. J Appl Physiol 68:1282–1285

    Article  CAS  PubMed  Google Scholar 

  20. Seburn KL, Gardiner P (1995) Adaptations of rat lateral gastrocnemius motor units in response to voluntary running. J Appl Physiol 78:1673–1678

    Article  CAS  PubMed  Google Scholar 

  21. Lynch GS, Hinkle RT, Chamberlain JS, Brooks SV, Faulkner JA (2001) Force and power output of fast and slow skeletal muscles from mdx mice 6-28 months old. J Physiol 535:591–600

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Brooks SV, Faulkner JA (1988) Contractile properties of skeletal muscles from young, adult and aged mice. J Physiol 404:71–82

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Grange RW, Gainer TG, Marschner KM, Talmadge RJ, Stull JT (2002) Fast-twitch skeletal muscles of dystrophic mouse pups are resistant to injury from acute mechanical stress. Am J Physiol Cell Physiol 283:C1090–C1101

    Article  CAS  PubMed  Google Scholar 

  24. Belluardo N, Westerblad H, Mudo G, Casabona A, Bruton J, Caniglia G et al (2001) Neuromuscular junction disassembly and muscle fatigue in mice lacking neurotrophin-4. Mol Cell Neurosci 18:56–67

    Article  CAS  PubMed  Google Scholar 

  25. Danieli-Betto D, Esposito A, Germinario E, Sandona D, Martinello T, Jakubiec-Puka A et al (2005) Deficiency of alpha-sarcoglycan differently affects fast- and slow-twitch skeletal muscles. Am J Physiol Regul Integr Comp Physiol 289:R1328–R1337

    Article  CAS  PubMed  Google Scholar 

  26. Grange RW, Meeson A, Chin E, Lau KS, Stull JT, Shelton JM et al (2001) Functional and molecular adaptations in skeletal muscle of myoglobin-mutant mice. Am J Physiol Cell Physiol 281:C1487–C1494

    CAS  PubMed  Google Scholar 

  27. Parry DJ, Desypris G (1985) Fatigability and oxidative capacity of forelimb and hind limb muscles of dystrophic mice. Exp Neurol 87:358–368

    Google Scholar 

  28. Swallow JG, Garland T Jr, Carter PA, Zhan WZ, Sieck GC (1998) Effects of voluntary activity and genetic selection on aerobic capacity in house mice (Mus domesticus). J Appl Physiol 84:69–76

    CAS  PubMed  Google Scholar 

  29. Shefner JM (2001) Motor unit number estimation in human neurological diseases and animal models. Clin Neurophysiol 112:955–964

    Article  CAS  PubMed  Google Scholar 

  30. McComas AJ, Fawcett PR, Campbell MJ, Sica RE (1971) Electrophysiological estimation of the number of motor units within a human muscle. J Neurol Neurosurg Psychiatry 34:121–131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Major LA, Hegedus J, Weber DJ, Gordon T, Jones KE (2007) Method for counting motor units in mice and validation using a mathematical model. J Neurophysiol 97:1846–1856

    Article  PubMed  Google Scholar 

  32. Ebels EJ (1975) Dark neurons: a significant artifact: the influence of the maturational state of neurons on the occurrence of the phenomenon. Acta Neuropathol 33:271–273

    Article  CAS  PubMed  Google Scholar 

  33. Garman RH (1990) Artifacts in routinely immersion fixed nervous tissue. Toxicol Pathol 18:149–153

    CAS  PubMed  Google Scholar 

  34. Jortner BS (2006) The return of the dark neuron. A histological artifact complicating contemporary neurotoxicologic evaluation. Neurotoxicology 27:628–634

    Article  CAS  PubMed  Google Scholar 

  35. Schrèoder JM (2001) Pathology of peripheral nerves: an atlas of structural and molecular pathological changes. Springer, Berlin/New York

    Book  Google Scholar 

  36. Emery AEH (1998) Neuromuscular disorders: clinical and molecular genetics. Wiley, Chichester; New York

    Google Scholar 

  37. Dyck PJ, Thomas PK (2005) Peripheral neuropathy, 4th edn. Elsevier Saunders, Philadelphia, PA

    Google Scholar 

  38. Engel A, Franzini-Armstrong C (2004) Myology: basic and clinical, 3rd edn. McGraw-Hill, Medical Pub. Division, New York

    Google Scholar 

  39. Maddatu TP, Garvey SM, Schroeder DG, Hampton TG, Cox GA (2004) Transgenic rescue of neurogenic atrophy in the nmd mouse reveals a role for Ighmbp2 in dilated cardiomyopathy. Hum Mol Genet 13:1105–1115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Hershkovitz E, Rozin I, Limony Y, Golan H, Hadad N, Gorodischer R et al (2007) Hypoparathyroidism, retardation, and dysmorphism syndrome: impaired early growth and increased susceptibility to severe infections due to hyposplenism and impaired polymorphonuclear cell functions. Pediatr Res 62:505–509

    Article  PubMed  Google Scholar 

  41. Noakes PG, Miner JH, Gautam M, Cunningham JM, Sanes JR, Merlie JP (1995) The renal glomerulus of mice lacking s-laminin/laminin β2: nephrosis despite molecular compensation by laminin β1. Nat Genet 10:400–406

    Article  CAS  PubMed  Google Scholar 

  42. Zhai RG, Cao Y, Hiesinger PR, Zhou Y, Mehta SQ, Schulze KL et al (2006) Drosophila NMNAT maintains neural integrity independent of its NAD synthesis activity. PLoS Biol 4, e416

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Zhai RG, Zhang F, Hiesinger PR, Cao Y, Haueter CM, Bellen HJ (2008) NAD synthase NMNAT acts as a chaperone to protect against neurodegeneration. Nature 452:887–891

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Press C, Milbrandt J (2008) Nmnat delays axonal degeneration caused by mitochondrial and oxidative stress. J Neurosci 28:4861–4871

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Maddatu TP, Garvey SM, Schroeder DG, Zhang W, Kim S-Y, Nicholson AI et al (2005) Dilated cardiomyopathy (DCM) in the nmd mouse: transgenic rescue and QTLs that improve cardiac function and survival. Hum Mol Genet 14(21):3179–3189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Cox GA, Mahaffey CL, Frankel WN (1998) Identification of the mouse neuromuscular degeneration gene and mapping of a second site suppressor allele. Neuron 21:1327–1337

    Article  CAS  PubMed  Google Scholar 

  47. Monani UR, Pastore MT, Gavrilina TO, Jablonka S, Le TT, Andreassi C et al (2003) A transgene carrying an A2G missense mutation in the SMN gene modulates phenotypic severity in mice with severe (type I) spinal muscular atrophy. J Cell Biol 160:41–52

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Le TT, Pham LT, Butchbach ME, Zhang HL, Monani UR, Coovert DD et al (2005) SMNDelta7, the major product of the centromeric survival motor neuron (SMN2) gene, extends survival in mice with spinal muscular atrophy and associates with full-length SMN. Hum Mol Genet 14:845–857

    Article  CAS  PubMed  Google Scholar 

  49. Monani UR, Sendtner M, Coovert DD, Parsons DW, Andreassi C, Le TT et al (2000) The human centromeric survival motor neuron gene (SMN2) rescues embryonic lethality in Smn(-/-) mice and results in a mouse with spinal muscular atrophy. Hum Mol Genet 9:333–339

    Article  CAS  PubMed  Google Scholar 

  50. Schrank B, Gotz R, Gunnersen JM, Ure JM, Toyka KV, Smith AG et al (1997) Inactivation of the survival motor neuron gene, a candidate gene for human spinal muscular atrophy, leads to massive cell death in early mouse embryos. Proc Natl Acad Sci U S A 94:9920–9925

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Martin N, Jaubert J, Gounon P, Salido E, Haase G, Szatanik M et al (2002) A missense mutation in Tbce causes progressive motor neuronopathy in mice. Nat Genet 32:443–447

    Article  CAS  PubMed  Google Scholar 

  52. Bommel H, Xie G, Rossoll W, Wiese S, Jablonka S, Boehm T et al (2002) Missense mutation in the tubulin-specific chaperone E (Tbce) gene in the mouse mutant progressive motor neuronopathy, a model of human motoneuron disease. J Cell Biol 159:563–569

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Puls I, Jonnakuty C, LaMonte BH, Holzbaur EL, Tokito M, Mann E et al (2003) Mutant dynactin in motor neuron disease. Nat Genet 33:455–456

    Article  CAS  PubMed  Google Scholar 

  54. Chevalier-Larsen ES, Wallace KE, Pennise CR, Holzbaur EL (2008) Lysosomal proliferation and distal degeneration in motor neurons expressing the G59S mutation in the p150Glued subunit of dynactin. Hum Mol Genet 17:1946–1955

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Lai C, Lin X, Chandran J, Shim H, Yang WJ, Cai H (2007) The G59S mutation in p150(glued) causes dysfunction of dynactin in mice. J Neurosci 27:13982–13990

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. LaMonte BH, Wallace KE, Holloway BA, Shelly SS, Ascano J, Tokito M et al (2002) Disruption of dynein/dynactin inhibits axonal transport in motor neurons causing late-onset progressive degeneration. Neuron 34:715–727

    Article  CAS  PubMed  Google Scholar 

  57. Ripps ME, Huntley GW, Hof PR, Morrison JH, Gordon JW (1995) Transgenic mice expressing an altered murine superoxide dismutase gene provide an animal model of amyotrophic lateral sclerosis. Proc Natl Acad Sci U S A 92:689–693

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Kunst CB, Messer L, Gordon J, Haines J, Patterson D (2000) Genetic mapping of a mouse modifier gene that can prevent ALS onset. Genomics 70:181–189

    Article  CAS  PubMed  Google Scholar 

  59. Bruijn LI, Becher MW, Lee MK, Anderson KL, Jenkins NA, Copeland NG et al (1997) ALS-linked SOD1 mutant G85R mediates damage to astrocytes and promotes rapidly progressive disease with SOD1-containing inclusions. Neuron 18:327–338

    Article  CAS  PubMed  Google Scholar 

  60. Wang J, Xu G, Gonzales V, Coonfield M, Fromholt D, Copeland NG et al (2002) Fibrillar inclusions and motor neuron degeneration in transgenic mice expressing superoxide dismutase 1 with a disrupted copper-binding site. Neurobiol Dis 10:128–138

    Article  CAS  PubMed  Google Scholar 

  61. Wong PC, Pardo CA, Borchelt DR, Lee MK, Copeland NG, Jenkins NA et al (1995) An adverse property of a familial ALS-linked SOD1 mutation causes motor neuron disease characterized by vacuolar degeneration of mitochondria. Neuron 14:1105–1116

    Article  CAS  PubMed  Google Scholar 

  62. Gurney ME, Pu H, Chiu AY, Dal Canto MC, Polchow CY, Alexander DD et al (1994) Motor neuron degeneration in mice that express a human Cu, Zn superoxide dismutase mutation. Science 264:1772–1775

    Article  CAS  PubMed  Google Scholar 

  63. Heiman-Patterson TD, Deitch JS, Blankenhorn EP, Erwin KL, Perreault MJ, Alexander BK et al (2005) Background and gender effects on survival in the TgN(SOD1-G93A)1Gur mouse model of ALS. J Neurol Sci 236:1–7

    Article  CAS  PubMed  Google Scholar 

  64. Messer A, Flaherty L (1986) Autosomal dominance in a late-onset motor neuron disease in the mouse. J Neurogenet 3:345–355

    Article  CAS  PubMed  Google Scholar 

  65. Bronson RT, Lake BD, Cook S, Taylor S, Davisson MT (1993) Motor neuron degeneration of mice is a model of neuronal ceroid lipofuscinosis (Batten’s disease). Ann Neurol 33:381–385

    Article  CAS  PubMed  Google Scholar 

  66. Ranta S, Zhang Y, Ross B, Lonka L, Takkunen E, Messer A et al (1999) The neuronal ceroid lipofuscinoses in human EPMR and mnd mutant mice are associated with mutations in CLN8. Nat Genet 23:233–236

    Article  CAS  PubMed  Google Scholar 

  67. Hafezparast M, Klocke R, Ruhrberg C, Marquardt A, Ahmad-Annuar A, Bowen S et al (2003) Mutations in dynein link motor neuron degeneration to defects in retrograde transport. Science 300:808–812

    Article  CAS  PubMed  Google Scholar 

  68. Chen XJ, Levedakou EN, Millen KJ, Wollmann RL, Soliven B, Popko B (2007) Proprioceptive sensory neuropathy in mice with a mutation in the cytoplasmic Dynein heavy chain 1 gene. J Neurosci 27:14515–14524

    Article  CAS  PubMed  Google Scholar 

  69. Ilieva HS, Yamanaka K, Malkmus S, Kakinohana O, Yaksh T, Marsala M et al (2008) Mutant dynein (Loa) triggers proprioceptive axon loss that extends survival only in the SOD1 ALS model with highest motor neuron death. Proc Natl Acad Sci U S A 105:12599–12604

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Chow CY, Landers JE, Bergren SK, Sapp PC, Grant AE, Jones JM et al (2009) Deleterious variants of FIG4, a phosphoinositide phosphatase, in patients with ALS. Am J Hum Genet 84:85–88

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Chow CY, Zhang Y, Dowling JJ, Jin N, Adamska M, Shiga K et al (2007) Mutation of FIG4 causes neurodegeneration in the pale tremor mouse and patients with CMT4J. Nature 448:68–72

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Zhang X, Chow CY, Sahenk Z, Shy ME, Meisler MH, Li J (2008) Mutation of FIG4 causes a rapidly progressive, asymmetric neuronal degeneration. Brain 131:1990–2001

    Article  PubMed  PubMed Central  Google Scholar 

  73. Schmitt-John T, Drepper C, Mussmann A, Hahn P, Kuhlmann M, Thiel C et al (2005) Mutation of Vps54 causes motor neuron disease and defective spermiogenesis in the wobbler mouse. Nat Genet 37:1213–1215

    Article  CAS  PubMed  Google Scholar 

  74. Suter U, Welcher AA, Ozcelik T, Snipes GJ, Kosaras B, Francke U et al (1992) Trembler mouse carries a point mutation in a myelin gene. Nature 356:241–244

    Article  CAS  PubMed  Google Scholar 

  75. Giese KP, Martini R, Lemke G, Soriano P, Schachner M (1992) Mouse P0 gene disruption leads to hypomyelination, abnormal expression of recognition molecules, and degeneration of myelin and axons. Cell 71:565–576

    Article  CAS  PubMed  Google Scholar 

  76. Wrabetz L, Feltri ML, Quattrini A, Imperiale D, Previtali S, D’Antonio M et al (2000) P(0) glycoprotein overexpression causes congenital hypomyelination of peripheral nerves. J Cell Biol 148:1021–1034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Wrabetz L, D’Antonio M, Pennuto M, Dati G, Tinelli E, Fratta P et al (2006) Different intracellular pathomechanisms produce diverse Myelin Protein Zero neuropathies in transgenic mice. J Neurosci 26:2358–2368

    Article  CAS  PubMed  Google Scholar 

  78. Le N, Nagarajan R, Wang JY, Araki T, Schmidt RE, Milbrandt J (2005) Analysis of congenital hypomyelinating Egr2Lo/Lo nerves identifies Sox2 as an inhibitor of Schwann cell differentiation and myelination. Proc Natl Acad Sci U S A 102:2596–2601

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Topilko P, Schneider-Maunoury S, Levi G, Baron-Van Evercooren A, Chennoufi AB, Seitanidou T et al (1994) Krox-20 controls myelination in the peripheral nervous system. Nature 371:796–799

    Article  CAS  PubMed  Google Scholar 

  80. Nelles E, Butzler C, Jung D, Temme A, Gabriel HD, Dahl U et al (1996) Defective propagation of signals generated by sympathetic nerve stimulation in the liver of connexin32-deficient mice. Proc Natl Acad Sci U S A 93:9565–9570

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Anzini P, Neuberg DH, Schachner M, Nelles E, Willecke K, Zielasek J et al (1997) Structural abnormalities and deficient maintenance of peripheral nerve myelin in mice lacking the gap junction protein connexin 32. J Neurosci 17:4545–4551

    CAS  PubMed  Google Scholar 

  82. Jeng LJ, Balice-Gordon RJ, Messing A, Fischbeck KH, Scherer SS (2006) The effects of a dominant connexin32 mutant in myelinating Schwann cells. Mol Cell Neurosci 32:283–298

    Article  CAS  PubMed  Google Scholar 

  83. Detmer SA, Vande Velde C, Cleveland DW, Chan DC (2008) Hindlimb gait defects due to motor axon loss and reduced distal muscles in a transgenic mouse model of Charcot-Marie-Tooth type 2A. Hum Mol Genet 17:367–375

    Article  CAS  PubMed  Google Scholar 

  84. Lee MK, Marszalek JR, Cleveland DW (1994) A mutant neurofilament subunit causes massive, selective motor neuron death: implications for the pathogenesis of human motor neuron disease. Neuron 13:975–988

    Article  CAS  PubMed  Google Scholar 

  85. Zhu Q, Couillard-Despres S, Julien JP (1997) Delayed maturation of regenerating myelinated axons in mice lacking neurofilaments. Exp Neurol 148:299–316

    Article  CAS  PubMed  Google Scholar 

  86. Huang L, Min JN, Masters S, Mivechi NF, Moskophidis D (2007) Insights into function and regulation of small heat shock protein 25 (HSPB1) in a mouse model with targeted gene disruption. Genesis 45:487–501

    Article  CAS  PubMed  Google Scholar 

  87. Gillespie CS, Sherman DL, Fleetwood-Walker SM, Cottrell DF, Tait S, Garry EM et al (2000) Peripheral demyelination and neuropathic pain behavior in periaxin-deficient mice. Neuron 26:523–531

    Article  CAS  PubMed  Google Scholar 

  88. Brandon EP, Lin W, D’Amour KA, Pizzo DP, Dominguez B, Sugiura Y et al (2003) Aberrant patterning of neuromuscular synapses in choline acetyltransferase-deficient mice. J Neurosci 23:539–549

    CAS  PubMed  Google Scholar 

  89. Misgeld T, Burgess RW, Lewis RM, Cunningham JM, Lichtman JW, Sanes JR (2002) Roles of neurotransmitter in synapse formation. Development of neuromuscular junctions lacking choline acetyltransferase. Neuron 36:635–648

    Article  CAS  PubMed  Google Scholar 

  90. Buffelli M, Burgess RW, Feng G, Lobe CG, Lichtman JW, Sanes JR (2003) Genetic evidence that relative synaptic efficacy biases the outcome of synaptic competition. Nature 424:430–434

    Article  CAS  PubMed  Google Scholar 

  91. Prado VF, Martins-Silva C, de Castro BM, Lima RF, Barros DM, Amaral E et al (2006) Mice deficient for the vesicular acetylcholine transporter are myasthenic and have deficits in object and social recognition. Neuron 51:601–612

    Article  CAS  PubMed  Google Scholar 

  92. Feng G, Krejci E, Molgo J, Cunningham JM, Massoulie J, Sanes JR (1999) Genetic analysis of collagen Q: roles in acetylcholinesterase and butyrylcholinesterase assembly and in synaptic structure and function. J Cell Biol 144:1349–1360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Adler M, Manley HA, Purcell AL, Deshpande SS, Hamilton TA, Kan RK et al (2004) Reduced acetylcholine receptor density, morphological remodeling, and butyrylcholinesterase activity can sustain muscle function in acetylcholinesterase knockout mice. Muscle Nerve 30:317–327

    Article  CAS  PubMed  Google Scholar 

  94. Mesulam MM, Guillozet A, Shaw P, Levey A, Duysen EG, Lockridge O (2002) Acetylcholinesterase knockouts establish central cholinergic pathways and can use butyrylcholinesterase to hydrolyze acetylcholine. Neuroscience 110:627–639

    Article  CAS  PubMed  Google Scholar 

  95. Burgess RW, Nguyen QT, Son YJ, Lichtman JW, Sanes JR (1999) Alternatively spliced isoforms of nerve- and muscle-derived agrin: their roles at the neuromuscular junction. Neuron 23:33–44

    Article  CAS  PubMed  Google Scholar 

  96. Burgess RW, Skarnes WC, Sanes JR (2000) Agrin isoforms with distinct amino termini: differential expression, localization, and function. J Cell Biol 151:41–52

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Lin W, Burgess RW, Dominguez B, Pfaff SL, Sanes JR, Lee KF (2001) Distinct roles of nerve and muscle in postsynaptic differentiation of the neuromuscular synapse. Nature 410:1057–1064

    Article  CAS  PubMed  Google Scholar 

  98. Harvey SJ, Jarad G, Cunningham J, Rops AL, van der Vlag J, Berden JH et al (2007) Disruption of glomerular basement membrane charge through podocyte-specific mutation of agrin does not alter glomerular permselectivity. Am J Pathol 171(1):139–152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Gautam M, Noakes PG, Moscoso L, Rupp F, Scheller RH, Merlie JP et al (1996) Defective neuromuscular synaptogenesis in agrin-deficient mutant mice. Cell 85:525–535

    Article  CAS  PubMed  Google Scholar 

  100. DeChiara TM, Bowen DC, Valenzuela DM, Simmons MV, Poueymirou WT, Thomas S et al (1996) The receptor tyrosine kinase MuSK is required for neuromuscular junction formation in vivo. Cell 85:501–512

    Article  CAS  PubMed  Google Scholar 

  101. Weatherbee SD, Anderson KV, Niswander LA (2006) LDL-receptor-related protein 4 is crucial for formation of the neuromuscular junction. Development 133:4993–5000

    Article  CAS  PubMed  Google Scholar 

  102. Gautam M, Noakes PG, Mudd J, Nichol M, Chu GC, Sanes JR et al (1995) Failure of postsynaptic specialization to develop at neuromuscular junctions of rapsyn-deficient mice. Nature 377:232–236

    Article  CAS  PubMed  Google Scholar 

  103. Okada K, Inoue A, Okada M, Murata Y, Kakuta S, Jigami T et al (2006) The muscle protein Dok-7 is essential for neuromuscular synaptogenesis. Science 312:1802–1805

    Article  CAS  PubMed  Google Scholar 

  104. Noakes PG, Gautam M, Mudd J, Sanes JR, Merlie JP (1995) Aberrant differentiation of neuromuscular junctions in mice lacking s-laminin/laminin beta 2. Nature 374:258–262

    Article  CAS  PubMed  Google Scholar 

  105. Friese MB, Blagden CS, Burden SJ (2007) Synaptic differentiation is defective in mice lacking acetylcholine receptor beta-subunit tyrosine phosphorylation. Development 134:4167–4176

    Article  CAS  PubMed  Google Scholar 

  106. Missias AC, Mudd J, Cunningham JM, Steinbach JH, Merlie JP, Sanes JR (1997) Deficient development and maintenance of postsynaptic specializations in mutant mice lacking an ‘adult’ acetylcholine receptor subunit. Development 124:5075–5086

    CAS  PubMed  Google Scholar 

  107. Witzemann V, Schwarz H, Koenen M, Berberich C, Villarroel A, Wernig A et al (1996) Acetylcholine receptor epsilon-subunit deletion causes muscle weakness and atrophy in juvenile and adult mice. Proc Natl Acad Sci U S A 93:13286–13291

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Takahashi M, Kubo T, Mizoguchi A, Carlson CG, Endo K, Ohnishi K (2002) Spontaneous muscle action potentials fail to develop without fetal-type acetylcholine receptors. EMBO Rep 3:674–681

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Koenen M, Peter C, Villarroel A, Witzemann V, Sakmann B (2005) Acetylcholine receptor channel subtype directs the innervation pattern of skeletal muscle. EMBO Rep 6:570–576

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Liu Y, Padgett D, Takahashi M, Li H, Sayeed A, Teichert RW et al (2008) Essential roles of the acetylcholine receptor gamma-subunit in neuromuscular synaptic patterning. Development 135:1957–1967

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Sicinski P, Geng Y, Ryder Cook AS, Barnard EA, Darlison MG, Barnard PJ (1989) The molecular basis of muscular dystrophy in the mdx mouse: a point mutation. Science 244:1578–1580

    Article  CAS  PubMed  Google Scholar 

  112. Chapman VM, Miller DR, Armstrong D, Caskey CT (1989) Recovery of induced mutations for X chromosome-linked muscular dystrophy in mice. Proc Natl Acad Sci U S A 86:1292–1296

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Danko I, Chapman V, Wolff JA (1992) The frequency of revertants in mdx mouse genetic models for Duchenne muscular dystrophy. Pediatr Res 32:128–131

    Article  CAS  PubMed  Google Scholar 

  114. Cox GA, Phelps SF, Chapman VM, Chamberlain JS (1993) New mdx mutation disrupts expression of muscle and nonmuscle isoforms of dystrophin. Nat Genet 4:87–93

    Article  CAS  PubMed  Google Scholar 

  115. Im WB, Phelps SF, Copen EH, Adams EG, Slightom JL, Chamberlain JS (1996) Differential expression of dystrophin isoforms in strains of mdx mice with different mutations. Hum Mol Genet 5:1149–1153

    Article  CAS  PubMed  Google Scholar 

  116. Araki E, Nakamura K, Nakao K, Kameya S, Kobayashi O, Nonaka I et al (1997) Targeted disruption of exon 52 in the mouse dystrophin gene induced muscle degeneration similar to that observed in Duchenne muscular dystrophy. Biochem Biophys Res Commun 238:492–497

    Article  CAS  PubMed  Google Scholar 

  117. Kudoh H, Ikeda H, Kakitani M, Ueda A, Hayasaka M, Tomizuka K et al (2005) A new model mouse for Duchenne muscular dystrophy produced by 2.4 Mb deletion of dystrophin gene using Cre-loxP recombination system. Biochem Biophys Res Commun 328:507–516

    Article  CAS  PubMed  Google Scholar 

  118. Grewal PK, Holzfeind PJ, Bittner RE, Hewitt JE (2001) Mutant glycosyltransferase and altered glycosylation of alpha-dystroglycan in the myodystrophy mouse. Nat Genet 28:151–154

    Article  CAS  PubMed  Google Scholar 

  119. Lee Y, Kameya S, Cox GA, Hsu J, Hicks W, Maddatu TP et al (2005) Ocular abnormalities in Large(myd) and Large(vls) mice, spontaneous models for muscle, eye, and brain diseases. Mol Cell Neurosci 30:160–172

    Article  CAS  PubMed  Google Scholar 

  120. Kuang W, Xu H, Vachon PH, Liu L, Loechel F, Wewer UM et al (1998) Merosin-deficient congenital muscular dystrophy. Partial genetic correction in two mouse models. J Clin Invest 102:844–852

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Michelson AM, Russell ES, Harman PJ (1955) Dystrophia muscularis: a hereditary primary myopathy in the house mouse. Proc Natl Acad Sci U S A 12:1079–1084

    Article  Google Scholar 

  122. Miyagoe Y, Hanaoka K, Nonaka I, Hayasaka M, Nabeshima Y, Arahata K et al (1997) Laminin alpha2 chain-null mutant mice by targeted disruption of the Lama2 gene: a new model of merosin (laminin 2)-deficient congenital muscular dystrophy. FEBS Lett 415:33–39

    Article  CAS  PubMed  Google Scholar 

  123. Patton BL, Wang B, Tarumi YS, Seburn KL, Burgess RW (2008) A single point mutation in the LN domain of LAMA2 causes muscular dystrophy and peripheral amyelination. J Cell Sci 121:1593–1604

    Article  CAS  PubMed  Google Scholar 

  124. Sunada Y, Bernier SM, Utani A, Yamada Y, Campbell KP (1995) Identification of a novel mutant transcript of laminin α2 chain gene responsible for muscular dystrophy and dysmyelination in dy2J mice. Hum Mol Genet 4:1055–1061

    Article  CAS  PubMed  Google Scholar 

  125. Bittner RE, Anderson LV, Burkhardt E, Bashir R, Vafiadaki E, Ivanova S et al (1999) Dysferlin deletion in SJL mice (SJL-Dysf) defines a natural model for limb girdle muscular dystrophy 2B. Nat Genet 23:141–142

    Article  CAS  PubMed  Google Scholar 

  126. Bansal D, Miyake K, Vogel SS, Groh S, Chen CC, Williamson R et al (2003) Defective membrane repair in dysferlin-deficient muscular dystrophy. Nature 423:168–172

    Article  CAS  PubMed  Google Scholar 

  127. Ho M, Post CM, Donahue LR, Lidov HG, Bronson RT, Goolsby H et al (2004) Disruption of muscle membrane and phenotype divergence in two novel mouse models of dysferlin deficiency. Hum Mol Genet 13:1999–2010

    Article  CAS  PubMed  Google Scholar 

  128. Grady RM, Grange RW, Lau KS, Maimone MM, Nichol MC, Stull JT et al (1999) Role for alpha-dystrobrevin in the pathogenesis of dystrophin-dependent muscular dystrophies. Nat Cell Biol 1:215–220

    Article  CAS  PubMed  Google Scholar 

  129. Bonaldo P, Braghetta P, Zanetti M, Piccolo S, Volpin D, Bressan GM (1998) Collagen VI deficiency induces early onset myopathy in the mouse: an animal model for Bethlem myopathy. Hum Mol Genet 7:2135–2140

    Article  CAS  PubMed  Google Scholar 

  130. Irwin WA, Bergamin N, Sabatelli P, Reggiani C, Megighian A, Merlini L et al (2003) Mitochondrial dysfunction and apoptosis in myopathic mice with collagen VI deficiency. Nat Genet 35:367–371

    Article  CAS  PubMed  Google Scholar 

  131. Eklund L, Piuhola J, Komulainen J, Sormunen R, Ongvarrasopone C, Fassler R et al (2001) Lack of type XV collagen causes a skeletal myopathy and cardiovascular defects in mice. Proc Natl Acad Sci U S A 98:1194–1199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Galbiati F, Engelman JA, Volonte D, Zhang XL, Minetti C, Li M et al (2001) Caveolin-3 null mice show a loss of caveolae, changes in the microdomain distribution of the dystrophin-glycoprotein complex, and t-tubule abnormalities. J Biol Chem 276:21425–21433

    Article  CAS  PubMed  Google Scholar 

  133. Crawford K, Flick R, Close L, Shelly D, Paul R, Bove K et al (2002) Mice lacking skeletal muscle actin show reduced muscle strength and growth deficits and die during the neonatal period. Mol Cell Biol 22:5887–5896

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Ilkovski B, Cooper ST, Nowak K, Ryan MM, Yang N, Schnell C et al (2001) Nemaline myopathy caused by mutations in the muscle alpha-skeletal-actin gene. Am J Hum Genet 68:1333–1343

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Garvey SM, Rajan C, Lerner AP, Frankel WN, Cox GA (2002) The muscular dystrophy with myositis (mdm) mouse mutation disrupts a skeletal muscle-specific domain of titin. Genomics 79:146–149

    Article  CAS  PubMed  Google Scholar 

  136. Gotthardt M, Hammer RE, Hubner N, Monti J, Witt CC, McNabb M et al (2003) Conditional expression of mutant M-line titins results in cardiomyopathy with altered sarcomere structure. J Biol Chem 278:6059–6065

    Article  CAS  PubMed  Google Scholar 

  137. May SR, Stewart NJ, Chang W, Peterson AS (2004) A Titin mutation defines roles for circulation in endothelial morphogenesis. Dev Biol 270:31–46

    Article  CAS  PubMed  Google Scholar 

  138. Brady JP, Garland DL, Green DE, Tamm ER, Giblin FJ, Wawrousek EF (2001) AlphaB-crystallin in lens development and muscle integrity: a gene knockout approach. Invest Ophthalmol Vis Sci 42:2924–2934

    CAS  PubMed  Google Scholar 

  139. Homma S, Iwasaki M, Shelton GD, Engvall E, Reed JC, Takayama S (2006) BAG3 deficiency results in fulminant myopathy and early lethality. Am J Pathol 169:761–773

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Selcen D, Muntoni F, Burton BK, Pegoraro E, Sewry C, Bite AV et al (2009) Mutation in BAG3 causes severe dominant childhood muscular dystrophy. Ann Neurol 65(1):83–89

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Li Z, Colucci-Guyon E, Pincon-Raymond M, Mericskay M, Pournin S, Paulin D et al (1996) Cardiovascular lesions and skeletal myopathy in mice lacking desmin. Dev Biol 175:362–366

    Article  CAS  PubMed  Google Scholar 

  142. Milner DJ, Weitzer G, Tran D, Bradley A, Capetanaki Y (1996) Disruption of muscle architecture and myocardial degeneration in mice lacking desmin. J Cell Biol 134:1255–1270

    Article  CAS  PubMed  Google Scholar 

  143. Thornell L, Carlsson L, Li Z, Mericskay M, Paulin D (1997) Null mutation in the desmin gene gives rise to a cardiomyopathy. J Mol Cell Cardiol 29:2107–2124

    Article  CAS  PubMed  Google Scholar 

  144. Moza M, Mologni L, Trokovic R, Faulkner G, Partanen J, Carpen O (2007) Targeted deletion of the muscular dystrophy gene myotilin does not perturb muscle structure or function in mice. Mol Cell Biol 27:244–252

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Garvey SM, Miller SE, Claflin DR, Faulkner JA, Hauser MA (2006) Transgenic mice expressing the myotilin T57I mutation unite the pathology associated with LGMD1A and MFM. Hum Mol Genet 15:2348–2362

    Article  CAS  PubMed  Google Scholar 

  146. Sher RB, Aoyama C, Huebsch KA, Ji S, Kerner J, Yang Y et al (2006) A rostrocaudal muscular dystrophy caused by a defect in choline kinase beta, the first enzyme in phosphatidylcholine biosynthesis. J Biol Chem 281:4938–4948

    Article  CAS  PubMed  Google Scholar 

  147. Buj-Bello A, Laugel V, Messaddeq N, Zahreddine H, Laporte J, Pellissier JF et al (2002) The lipid phosphatase myotubularin is essential for skeletal muscle maintenance but not for myogenesis in mice. Proc Natl Acad Sci U S A 99:15060–15065

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Sullivan T, Escalante-Alcalde D, Bhatt H, Anver M, Bhat N, Nagashima K et al (1999) Loss of A-type lamin expression compromises nuclear envelope integrity leading to muscular dystrophy. J Cell Biol 147:913–920

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Arimura T, Helbling-Leclerc A, Massart C, Varnous S, Niel F, Lacene E et al (2005) Mouse model carrying H222P-Lmna mutation develops muscular dystrophy and dilated cardiomyopathy similar to human striated muscle laminopathies. Hum Mol Genet 14:155–169

    Article  CAS  PubMed  Google Scholar 

  150. Diaz F, Thomas CK, Garcia S, Hernandez D, Moraes CT (2005) Mice lacking COX10 in skeletal muscle recapitulate the phenotype of progressive mitochondrial myopathies associated with cytochrome c oxidase deficiency. Hum Mol Genet 14:2737–2748

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Mankodi A, Logigian E, Callahan L, McClain C, White R, Henderson D et al (2000) Myotonic dystrophy in transgenic mice expressing an expanded CUG repeat. Science 289:1769–1773

    Article  CAS  PubMed  Google Scholar 

  152. Seznec H, Agbulut O, Sergeant N, Savouret C, Ghestem A, Tabti N et al (2001) Mice transgenic for the human myotonic dystrophy region with expanded CTG repeats display muscular and brain abnormalities. Hum Mol Genet 10:2717–2726

    Article  CAS  PubMed  Google Scholar 

  153. Orengo JP, Chambon P, Metzger D, Mosier DR, Snipes GJ, Cooper TA (2008) Expanded CTG repeats within the DMPK 3′ UTR causes severe skeletal muscle wasting in an inducible mouse model for myotonic dystrophy. Proc Natl Acad Sci U S A 105:2646–2651

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Reddy S, Smith DB, Rich MM, Leferovich JM, Reilly P, Davis BM et al (1996) Mice lacking the myotonic dystrophy protein kinase develop a late onset progressive myopathy. Nat Genet 13:325–335

    Article  CAS  PubMed  Google Scholar 

  155. Kanadia RN, Johnstone KA, Mankodi A, Lungu C, Thornton CA, Esson D et al (2003) A muscleblind knockout model for myotonic dystrophy. Science 302:1978–1980

    Article  CAS  PubMed  Google Scholar 

  156. Malicdan MC, Noguchi S, Nonaka I, Hayashi YK, Nishino I (2007) A Gne knockout mouse expressing human GNE D176V mutation develops features similar to distal myopathy with rimmed vacuoles or hereditary inclusion body myopathy. Hum Mol Genet 16:2669–2682

    Article  CAS  PubMed  Google Scholar 

  157. Tronche F, Kellendonk C, Kretz O, Gass P, Anlag K, Orban PC et al (1999) Disruption of the glucocorticoid receptor gene in the nervous system results in reduced anxiety. Nat Genet 23:99–103

    Article  CAS  PubMed  Google Scholar 

  158. Yang X, Arber S, William C, Li L, Tanabe Y, Jessell TM et al (2001) Patterning of muscle acetylcholine receptor gene expression in the absence of motor innervation. Neuron 30:399–410

    Article  CAS  PubMed  Google Scholar 

  159. Arber S, Han B, Mendelsohn M, Smith M, Jessell TM, Sockanathan S (1999) Requirement for the homeobox gene Hb9 in the consolidation of motor neuron identity. Neuron 23:659–674

    Article  CAS  PubMed  Google Scholar 

  160. Schwander M, Leu M, Stumm M, Dorchies OM, Ruegg UT, Schittny J et al (2003) Beta1 integrins regulate myoblast fusion and sarcomere assembly. Dev Cell 4:673–685

    Article  CAS  PubMed  Google Scholar 

  161. Bruning JC, Michael MD, Winnay JN, Hayashi T, Horsch D, Accili D et al (1998) A muscle-specific insulin receptor knockout exhibits features of the metabolic syndrome of NIDDM without altering glucose tolerance. Mol Cell 2:559–569

    Article  CAS  PubMed  Google Scholar 

  162. Tallquist MD, Weismann KE, Hellstrom M, Soriano P (2000) Early myotome specification regulates PDGFA expression and axial skeleton development. Development 127:5059–5070

    CAS  PubMed  Google Scholar 

  163. Feltri ML, D’Antonio M, Previtali S, Fasolini M, Messing A, Wrabetz L (1999) P0-Cre transgenic mice for inactivation of adhesion molecules in Schwann cells. Ann N Y Acad Sci 883:116–123

    Article  CAS  PubMed  Google Scholar 

  164. Young P, Qiu L, Wang D, Zhao S, Gross J, Feng G (2008) Single-neuron labeling with inducible Cre-mediated knockout in transgenic mice. Nat Neurosci 11:721–728

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Feng G, Mellor RH, Bernstein M, Keller-Peck C, Nguyen QT, Wallace M et al (2000) Imaging neuronal subsets in transgenic mice expressing multiple spectral variants of GFP. Neuron 28:41–51

    Article  CAS  PubMed  Google Scholar 

  166. Misgeld T, Kerschensteiner M, Bareyre FM, Burgess RW, Lichtman JW (2007) Imaging axonal transport of mitochondria in vivo. Nat Methods 4(7):559–561

    Article  CAS  PubMed  Google Scholar 

  167. Zuo Y, Lubischer JL, Kang H, Tian L, Mikesh M, Marks A et al (2004) Fluorescent proteins expressed in mouse transgenic lines mark subsets of glia, neurons, macrophages, and dendritic cells for vital examination. J Neurosci 24:10999–11009

    Article  CAS  PubMed  Google Scholar 

  168. Wichterle H, Lieberam I, Porter JA, Jessell TM (2002) Directed differentiation of embryonic stem cells into motor neurons. Cell 110:385–397

    Article  CAS  PubMed  Google Scholar 

  169. Livet J, Weissman TA, Kang H, Draft RW, Lu J, Bennis RA et al (2007) Transgenic strategies for combinatorial expression of fluorescent proteins in the nervous system. Nature 450:56–62

    Article  CAS  PubMed  Google Scholar 

  170. Coleman MP, Conforti L, Buckmaster EA, Tarlton A, Ewing RM, Brown MC et al (1998) An 85-kb tandem triplication in the slow Wallerian degeneration (Wlds) mouse. Proc Natl Acad Sci U S A 95:9985–9990

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert W. Burgess .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Burgess, R.W., Cox, G.A., Seburn, K.L. (2016). Neuromuscular Disease Models and Analysis. In: Proetzel, G., Wiles, M. (eds) Mouse Models for Drug Discovery. Methods in Molecular Biology, vol 1438. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3661-8_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3661-8_19

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3659-5

  • Online ISBN: 978-1-4939-3661-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics