Skip to main content

Better Utilization of Mouse Models of Neurodegenerative Diseases in Preclinical Studies: From the Bench to the Clinic

  • Protocol
  • First Online:
Mouse Models for Drug Discovery

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1438))

Abstract

The major symptom of Alzheimer’s disease is dementia progressing with age. Its clinical diagnosis is preceded by a long prodromal period of brain pathology that encompasses both formation of extracellular amyloid and intraneuronal tau deposits in the brain and widespread neuronal death. At present, familial cases of dementia provide the most promising foundation for modeling neurodegenerative tauopathies, a group of heterogeneous disorders characterized by prominent intracellular accumulation of hyperphosphorylated tau protein. In this chapter, we describe major behavioral hallmarks of tauopathies, briefly outline the genetics underlying familial cases, and discuss the arising implications for modeling the disease in transgenic mouse systems. The selection of tests performed to evaluate the phenotype of a model should be guided by the key behavioral hallmarks that characterize human disorder and their homology to mouse cognitive systems. We attempt to provide general guidelines and establish criteria for modeling dementia in a mouse; however, interpretations of obtained results should avoid a reductionist “one gene, one disease” explanation of model characteristics. Rather, the focus should be directed to the question of how the mouse genome can cope with the over-expression of the protein coded by transgene(s). While each model is valuable within its own constraints and the experiments performed are guided by specific hypotheses, we seek to expand upon their methodology by offering guidance spanning from issues of mouse husbandry to choices of behavioral tests and routes of drug administration that might increase the external validity of studies and consequently optimize the translational aspect of preclinical research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

Aβ:

β-Amyloid peptide

AD:

Alzheimer’s disease

ApoE:

Apolipoprotein E

ApoE-ε4:

One of the three major alleles of ApoE gene

APP:

Amyloid-β precursor protein

A2M:

α-2 Macroglobulin

BVAAWF:

British Veterinary Association Animal Welfare Foundation

CLU:

Clusterin

CNS:

Central nervous system

CR:

Complement receptor

DLB:

Dementia with Lewy body

ES:

Embryonic stem

FAD:

Familial Alzheimer’s disease

FTD:

Frontotemporal dementias

FTDP-17:

Frontotemporal dementia and parkinsonism linked to chromosome 17

FRAME:

Fund for the Replacement of Animals in Medical Experiments

GLM:

General linear model

GWAS:

Genome-wide association studies

IDE:

Insulin-degrading enzyme

LB:

Lewy body

LRP:

Lipoprotein receptor-related protein

MAPT:

Microtubule-associated tau protein

MCI:

Mild cognitive impairment

MSA:

Multiple system atrophy

MWM:

Morris water maze

NFT:

Neurofibrillary tangles

PHF:

Paired helical filaments

PS1, PS2:

Presenilin 1, presenilin 2

RSPCA:

Royal Society for the Prevention of Cruelty to Animals

TREM2:

Triggering receptor expressed on myeloid cell 2 protein

UFAW:

Universities Federation of Animal Welfare

References

  1. Dubos R (1968) So human an animal. Charles Scribner’s, New York

    Google Scholar 

  2. Alzheimer A (1907) Über eine eigenartige Erkankung der Hirnrinde. Allg Z Psychiatrie Psychisch-Gerlichtlich Med 64:146–148

    Google Scholar 

  3. Stelzmann RA, Schnitzlein HN, Murtagh FR (1995) An English translation of Alzheimer’s 1907 paper, "Uber eine eigenartige Erkankung der Hirnrinde". Clin Anat 8:429–431

    Article  PubMed  Google Scholar 

  4. Braak H, Braak E (1994) Pathology of Alzheimer’s disease. In: Calne DB (ed) Neurodegenerative diseases. Saunders, Philadelphia, pp 585–613

    Google Scholar 

  5. Braak H, Braak E (1997) Frequency of stages of Alzheimer-related lesions in different age categories. Neurobiol Aging 18:351–357

    Article  CAS  PubMed  Google Scholar 

  6. Kosik KS, Shimura H (2005) Phosphorylated tau and the neurodegenerative foldopathies. Biochim Biophys Acta 1739:298–310

    Article  CAS  PubMed  Google Scholar 

  7. Lee VM, Goedert M, Trojanowski JQ (2001) Neurodegenerative tauopathies. Annu Rev Neurosci 24:1121–1159

    Article  CAS  PubMed  Google Scholar 

  8. Dickson DW (2003) Neurodegeneration: the molecular pathology of dementia and movement disorders. ISN Neuropath Press, Basel

    Google Scholar 

  9. Cotman CW, Su JH (1996) Mechanisms of neuronal death in Alzheimer’s disease. Brain Pathol 6:493–506

    Article  CAS  PubMed  Google Scholar 

  10. Terry RD (2006) Alzheimer’s disease and the aging brain. J Geriatr Psychiatry Neurol 19:125–128

    Article  PubMed  Google Scholar 

  11. Davies RR, Hodges JR, Kril JJ, Patterson K, Halliday GM et al (2005) The pathological basis of semantic dementia. Brain 128:1984–1995

    Article  PubMed  Google Scholar 

  12. Iqbal K, Alonso Adel C, Chen S, Chohan MO, El-Akkad E et al (2005) Tau pathology in Alzheimer disease and other tauopathies. Biochim Biophys Acta 1739:198–210

    Article  CAS  PubMed  Google Scholar 

  13. Albert MS (1996) Cognitive and neurobiologic markers of early Alzheimer’s disease. Proc Natl Acad Sci U S A 93:13547–13551

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Morgan D (2007) Amyloid, memory and neurogenesis. Exp Neurol 205:330–335

    Article  CAS  PubMed  Google Scholar 

  15. Petersen RC, Smith GE, Waring SC, Ivnik RJ, Tangalos EG et al (1999) Mild cognitive impairment: clinical characterization and outcome. Arch Neurol 56:303–308

    Article  CAS  PubMed  Google Scholar 

  16. Knopman DS, DeKosky ST, Cummings JL, Chui H, Corey-Bloom J et al (2001) Practice parameter: diagnosis of dementia (an evidence-based review). Report of the Quality Standards Subcommittee of the American Academy of Neurology. Neurology 56:1143–1153

    Article  CAS  PubMed  Google Scholar 

  17. Luis CA, Loewenstein DA, Acevedo A, Barker WW, Duara R (2003) Mild cognitive impairment: directions for future research. Neurology 61:438–444

    Article  CAS  PubMed  Google Scholar 

  18. Maruyama M, Arai H, Sugita M, Tanji H, Higuchi M et al (2001) Cerebrospinal fluid amyloid beta(1-42) levels in the mild cognitive impairment stage of Alzheimer’s disease. Exp Neurol 172:433–436

    Article  CAS  PubMed  Google Scholar 

  19. Riemenschneider M, Lautenschlager N, Wagenpfeil S, Diehl J, Drzezga A et al (2002) Cerebrospinal fluid tau and beta-amyloid 42 proteins identify Alzheimer disease in subjects with mild cognitive impairment. Arch Neurol 59:1729–1734

    Article  CAS  PubMed  Google Scholar 

  20. Cummings JL (2004) Dementia with lewy bodies: molecular pathogenesis and implications for classification. J Geriatr Psychiatry Neurol 17:112–119

    Article  PubMed  Google Scholar 

  21. Victoroff J, Zarow C, Mack WJ, Hsu E, Chui HC (1996) Physical aggression is associated with preservation of substantia nigra pars compacta in Alzheimer disease. Arch Neurol 53:428–434

    Article  CAS  PubMed  Google Scholar 

  22. Pahwa R, Lyons KE (2007) Handbook of Parkinson’s disease. Informa Healthcare USA, New York

    Google Scholar 

  23. Whitehouse PJ, Price DL, Struble RG, Clark AW, Coyle JT et al (1982) Alzheimer’s disease and senile dementia: loss of neurons in the basal forebrain. Science 215:1237–1239

    Article  CAS  PubMed  Google Scholar 

  24. Morrison JH, Hof PR (1997) Life and death of neurons in the aging brain. Science 278:412–419

    Article  CAS  PubMed  Google Scholar 

  25. Arnold SE, Hyman BT, Flory J, Damasio AR, Van Hoesen GW (1991) The topographical and neuroanatomical distribution of neurofibrillary tangles and neuritic plaques in the cerebral cortex of patients with Alzheimer’s disease. Cereb Cortex 1:103–116

    Article  CAS  PubMed  Google Scholar 

  26. Hyman BT, Van Hoesen GW, Damasio AR, Barnes CL (1984) Alzheimer’s disease: cell-specific pathology isolates the hippocampus formation. Science 225:1168–1170

    Article  CAS  PubMed  Google Scholar 

  27. Horn R, Ostertun B, Fric M, Solymosi L, Steudel A et al (1996) Atrophy of hippocampus in patients with Alzheimer’s disease and other diseases with memory impairment. Dementia 7:182–186

    CAS  PubMed  Google Scholar 

  28. Samuel W, Terry RD, Deteresa R, Butters N, Masliah E (1994) Clinical correlates of cortical and nucleus basalis pathology in Alzheimer dementia. Arch Neurol 51:772–778

    Article  CAS  PubMed  Google Scholar 

  29. Karas GB, Burton EJ, Rombouts SA, van Schijndel RA, O’Brien JT et al (2003) A comprehensive study of gray matter loss in patients with Alzheimer’s disease using optimized voxel-based morphometry. Neuroimage 18:895–907

    Article  CAS  PubMed  Google Scholar 

  30. Jack CR Jr, Shiung MM, Gunter JL, O’Brien PC, Weigand SD et al (2004) Comparison of different MRI brain atrophy rate measures with clinical disease progression in AD. Neurology 62:591–600

    Article  PubMed  PubMed Central  Google Scholar 

  31. Jope RS, Song L, Powers RE (1997) Cholinergic activation of phosphoinositide signaling is impaired in Alzheimer’s disease brain. Neurobiol Aging 18:111–120

    Article  CAS  PubMed  Google Scholar 

  32. Tong XK, Hamel E (1999) Regional cholinergic denervation of cortical microvessels and nitric oxide synthase-containing neurons in Alzheimer’s disease. Neuroscience 92:163–175

    Article  CAS  PubMed  Google Scholar 

  33. Mattson MP, Pedersen WA (1998) Effects of amyloid precursor protein derivatives and oxidative stress on basal forebrain cholinergic systems in Alzheimer’s disease. Int J Dev Neurosci 16:737–753

    Article  CAS  PubMed  Google Scholar 

  34. Grundke-Iqbal I, Iqbal K, Quinlan M, Tung YC, Zaidi MS et al (1986) Microtubule-associated protein tau. A component of Alzheimer paired helical filaments. J Biol Chem 261:6084–6089

    CAS  PubMed  Google Scholar 

  35. Braak H, Braak E (1997) Diagnostic criteria for neuropathologic assessment of Alzheimer’s disease. Neurobiol Aging 18:S85–S88

    Article  CAS  PubMed  Google Scholar 

  36. Tomlinson BE, Blessed G, Roth M (1968) Observations on the brains of non-demented old people. J Neurol Sci 7:331–356

    Article  CAS  PubMed  Google Scholar 

  37. Kidd M (1964) Alzheimer’s disease—an electron microscopical study. Brain 87:307–320

    Article  CAS  PubMed  Google Scholar 

  38. Goedert M, Wischik CM, Crowther RA, Walker JE, Klug A (1988) Cloning and sequencing of the cDNA encoding a core protein of the paired helical filament of Alzheimer disease: identification as the microtubule-associated protein tau. Proc Natl Acad Sci U S A 85:4051–4055

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Kosik KS, Joachim CL, Selkoe DJ (1986) Microtubule-associated protein tau (tau) is a major antigenic component of paired helical filaments in Alzheimer disease. Proc Natl Acad Sci U S A 83:4044–4048

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Paulus W, Selim M (1990) Corticonigral degeneration with neuronal achromasia and basal neurofibrillary tangles. Acta Neuropathol 81:89–94

    Article  CAS  PubMed  Google Scholar 

  41. Elizan TS, Hirano A, Abrams BM, Need RL, Van Nuis C et al (1966) Amyotrophic lateral sclerosis and parkinsonism-dementia complex of Guam. Neurological reevaluation. Arch Neurol 14:356–368

    Article  CAS  PubMed  Google Scholar 

  42. Hirano A, Malamud N, Elizan TS, Kurland LT (1966) Amyotrophic lateral sclerosis and Parkinsonism-dementia complex on Guam. Further pathologic studies. Arch Neurol 15:35–51

    Article  CAS  PubMed  Google Scholar 

  43. Hof PR, Bouras C, Perl DP, Sparks DL, Mehta N et al (1995) Age-related distribution of neuropathologic changes in the cerebral cortex of patients with Down’s syndrome. Quantitative regional analysis and comparison with Alzheimer’s disease. Arch Neurol 52:379–391

    Article  CAS  PubMed  Google Scholar 

  44. Kiuchi A, Otsuka N, Namba Y, Nakano I, Tomonaga M (1991) Presenile appearance of abundant Alzheimer’s neurofibrillary tangles without senile plaques in the brain in myotonic dystrophy. Acta Neuropathol 82:1–5

    Article  CAS  PubMed  Google Scholar 

  45. Mott RT, Dickson DW, Trojanowski JQ, Zhukareva V, Lee VM et al (2005) Neuropathologic, biochemical, and molecular characterization of the frontotemporal dementias. J Neuropathol Exp Neurol 64:420–428

    Article  CAS  PubMed  Google Scholar 

  46. Goedert M (2001) Alpha-synuclein and neurodegenerative diseases. Nat Rev Neurosci 2:492–501

    Article  CAS  PubMed  Google Scholar 

  47. Glenner GG, Wong CW (1984) Alzheimer’s disease: initial report of the purification and characterization of a novel cerebrovascular amyloid protein. Biochem Biophys Res Commun 120:885–890

    Article  CAS  PubMed  Google Scholar 

  48. Vigo-Pelfrey C, Lee D, Keim P, Lieberburg I, Schenk DB (1993) Characterization of beta-amyloid peptide from human cerebrospinal fluid. J Neurochem 61:1965–1968

    Article  CAS  PubMed  Google Scholar 

  49. Roher A, Wolfe D, Palutke M, KuKuruga D (1986) Purification, ultrastructure, and chemical analysis of Alzheimer disease amyloid plaque core protein. Proc Natl Acad Sci U S A 83:2662–2666

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Iwatsubo T, Odaka A, Suzuki N, Mizusawa H, Nukina N et al (1994) Visualization of A beta 42(43) and A beta 40 in senile plaques with end-specific A beta monoclonals: evidence that an initially deposited species is A beta 42(43). Neuron 13:45–53

    Article  CAS  PubMed  Google Scholar 

  51. Naslund J, Haroutunian V, Mohs R, Davis KL, Davies P et al (2000) Correlation between elevated levels of amyloid beta-peptide in the brain and cognitive decline. JAMA 283:1571–1577

    Article  CAS  PubMed  Google Scholar 

  52. Goate A, Chartier-Harlin MC, Mullan M, Brown J, Crawford F et al (1991) Segregation of a missense mutation in the amyloid precursor protein gene with familial Alzheimer’s disease. Nature 349:704–706

    Article  CAS  PubMed  Google Scholar 

  53. Chartier-Harlin M-C, Crawford F, Houlden H, Warren A, Hughes D et al (1991) Early-onset alzheimer’s disease caused by mutations at codon 717 of the ß-amyloid precursor protein gene. Nature 353:844–846

    Google Scholar 

  54. Chartier-Harlin MC, Crawford F, Hamandi K, Mullan M, Goate A et al (1991) Screening for the beta-amyloid precursor protein mutation (APP717: Val----Ile) in extended pedigrees with early onset alzheimer’s disease. Neurosci Lett 129:134–135

    Google Scholar 

  55. Sherrington R, Rogaev EI, Liang Y, Rogaeva EA, Levesque G et al (1995) Cloning of a gene bearing missense mutations in early-onset familial Alzheimer’s disease. Nature 375:754–760

    Article  CAS  PubMed  Google Scholar 

  56. Campion D, Flaman JM, Brice A, Hannequin D, Dubois B et al (1995) Mutations of the presenilin-1 gene in families with early-onset alzheimer’s disease. Human Mol Genet 4:2373–2377

    Google Scholar 

  57. Levy-Lahad E, Wasco W, Poorkaj P, Romano DM, Oshima J et al (1995) Candidate gene for the chromosome 1 familial Alzheimer’s disease locus. Science 269:973–977

    Article  CAS  PubMed  Google Scholar 

  58. Rogaev EI, Sherrington R, Rogaeva EA, Levesque G, Ikeda M et al (1995) Familial Alzheimer’s disease in kindreds with missense mutations in a gene on chromosome 1 related to the Alzheimer’s disease type 3 gene. Nature 376:775–778

    Article  CAS  PubMed  Google Scholar 

  59. Scheuner D, Eckman C, Jensen M, Song X, Citron M et al (1996) Secreted amyloid beta-protein similar to that in the senile plaques of Alzheimer’s disease is increased in vivo by the presenilin 1 and 2 and APP mutations linked to familial Alzheimer’s disease. Nat Med 2:864–870

    Article  CAS  PubMed  Google Scholar 

  60. Golde TE (2003) Alzheimer disease therapy: can the amyloid cascade be halted? J Clin Invest 111:11–18

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Hardy JA, Higgins GA (1992) Alzheimer’s disease: the amyloid cascade hypothesis. Science 256:184–185

    Article  CAS  PubMed  Google Scholar 

  62. Selkoe DJ (2002) Deciphering the genesis and fate of amyloid beta-protein yields novel therapies for Alzheimer disease. J Clin Invest 110:1375–1381

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Blacker D, Wilcox MA, Laird NM, Rodes L, Horvath SM et al (1998) Alpha-2 macroglobulin is genetically associated with Alzheimer disease. Nat Genet 19:357–360

    Article  CAS  PubMed  Google Scholar 

  64. Depboylu C, Lohmuller F, Du Y, Riemenschneider M, Kurz A et al (2006) Alpha2-macroglobulin, lipoprotein receptor-related protein and lipoprotein receptor-associated protein and the genetic risk for developing Alzheimer’s disease. Neurosci Lett 400:187–190

    Article  CAS  PubMed  Google Scholar 

  65. Zappia M, Cittadella R, Manna I, Nicoletti G, Andreoli V et al (2002) Genetic association of alpha2-macroglobulin polymorphisms with AD in southern Italy. Neurology 59:756–758

    Article  CAS  PubMed  Google Scholar 

  66. Bertram L, Tanzi RE (2001) Of replications and refutations: the status of Alzheimer’s disease genetic research. Curr Neurol Neurosci Rep 1:442–450

    Article  CAS  PubMed  Google Scholar 

  67. Cruts M, Theuns J, Van Broeckhoven C (2012) Locus-specific mutation databases for neurodegenerative brain diseases. Hum Mutat 33:1340–1344

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Strittmatter WJ, Saunders AM, Schmechel D, Pericak-Vance M, Enghild J et al (1993) Apolipoprotein E: high-avidity binding to beta-amyloid and increased frequency of type 4 allele in late-onset familial Alzheimer disease. Proc Natl Acad Sci U S A 90:1977–1981

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Corder EH, Saunders AM, Strittmatter WJ, Schmechel DE, Gaskell PC et al (1993) Gene dose of apolipoprotein E type 4 allele and the risk of Alzheimer’s disease in late onset families. Science 261:921–923

    Article  CAS  PubMed  Google Scholar 

  70. Evans DA, Bennett DA, Wilson RS, Bienias JL, Morris MC et al (2003) Incidence of Alzheimer disease in a biracial urban community: relation to apolipoprotein E allele status. Arch Neurol 60:185–189

    Article  PubMed  Google Scholar 

  71. Tang MX, Stern Y, Marder K, Bell K, Gurland B et al (1998) The APOE-epsilon4 allele and the risk of Alzheimer disease among African Americans, whites, and Hispanics. JAMA 279:751–755

    Article  CAS  PubMed  Google Scholar 

  72. Kim HC, Kim DK, Choi IJ, Kang KH, Yi SD et al (2001) Relation of apolipoprotein E polymorphism to clinically diagnosed Alzheimer’s disease in the Korean population. Psychiatry Clin Neurosci 55:115–120

    Article  CAS  PubMed  Google Scholar 

  73. Tanzi RE (2012) The genetics of Alzheimer disease. Cold Spring Harb Perspect Med 2

    Google Scholar 

  74. Tanzi RE, Bertram L (2001) New frontiers in Alzheimer’s disease genetics. Neuron 32:181–184

    Article  CAS  PubMed  Google Scholar 

  75. Lambert JC, Heath S, Even G, Campion D, Sleegers K et al (2009) Genome-wide association study identifies variants at CLU and CR1 associated with Alzheimer’s disease. Nat Genet 41:1094–1099

    Article  CAS  PubMed  Google Scholar 

  76. Harold D, Abraham R, Hollingworth P, Sims R, Gerrish A et al (2009) Genome-wide association study identifies variants at CLU and PICALM associated with Alzheimer’s disease. Nat Genet 41:1088–1093

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Ertekin-Taner N, Graff-Radford N, Younkin LH, Eckman C, Baker M et al (2000) Linkage of plasma Abeta42 to a quantitative locus on chromosome 10 in late-onset alzheimer’s disease pedigrees. Science 290:2303–2304

    Google Scholar 

  78. Bertram L, Blacker D, Crystal A, Mullin K, Keeney D et al (2000) Candidate genes showing no evidence for association or linkage with Alzheimer’s disease using family-based methodologies. Exp Gerontol 35:1353–1361

    Article  CAS  PubMed  Google Scholar 

  79. Hollingworth P, Harold D, Sims R, Gerrish A, Lambert JC et al (2011) Common variants at ABCA7, MS4A6A/MS4A4E, EPHA1, CD33 and CD2AP are associated with Alzheimer’s disease. Nat Genet 43:429–435

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Naj AC, Jun G, Beecham GW, Wang LS, Vardarajan BN et al (2011) Common variants at MS4A4/MS4A6E, CD2AP, CD33 and EPHA1 are associated with late-onset alzheimer’s disease. Nat Genet 43:436–441

    Google Scholar 

  81. Guerreiro R, Wojtas A, Bras J, Carrasquillo M, Rogaeva E et al (2013) TREM2 variants in Alzheimer’s disease. N Engl J Med 368:117–127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Jonsson T, Stefansson H, Steinberg S, Jonsdottir I, Jonsson PV et al (2013) Variant of TREM2 associated with the risk of Alzheimer’s disease. N Engl J Med 368:107–116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Mandelkow EM, Mandelkow E (1998) Tau in Alzheimer’s disease. Trends Cell Biol 8:425–427

    Article  CAS  PubMed  Google Scholar 

  84. Mandelkow EM, Stamer K, Vogel R, Thies E, Mandelkow E (2003) Clogging of axons by tau, inhibition of axonal traffic and starvation of synapses. Neurobiol Aging 24:1079–1085

    Article  CAS  PubMed  Google Scholar 

  85. Mattson MP (2004) Pathways towards and away from Alzheimer’s disease. Nature 430:631–639

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Rizzu P, Joosse M, Ravid R, Hoogeveen A, Kamphorst W et al (2000) Mutation-dependent aggregation of tau protein and its selective depletion from the soluble fraction in brain of P301L FTDP-17 patients. Hum Mol Genet 9:3075–3082

    Article  CAS  PubMed  Google Scholar 

  87. Clark LN, Poorkaj P, Wszolek Z, Geschwind DH, Nasreddine ZS et al (1998) Pathogenic implications of mutations in the tau gene in pallido-ponto-nigral degeneration and related neurodegenerative disorders linked to chromosome 17. Proc Natl Acad Sci U S A 95:13103–13107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Hutton M, Lendon CL, Rizzu P, Baker M, Froelich S et al (1998) Association of missense and 5’-splice-site mutations in tau with the inherited dementia FTDP-17. Nature 393:702–705

    Article  CAS  PubMed  Google Scholar 

  89. Spillantini MG, Murrell JR, Goedert M, Farlow MR, Klug A et al (1998) Mutation in the tau gene in familial multiple system tauopathy with presenile dementia. Proc Natl Acad Sci U S A 95:7737–7741

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Games D, Adams D, Alessandrini R, Barbour R, Berthelette P et al (1995) Alzheimer-type neuropathology in transgenic mice overexpressing V717F beta-amyloid precursor protein. Nature 373:523–527

    Article  CAS  PubMed  Google Scholar 

  91. Greenberg BD, Savage MJ, Howland DS, Ali SM, Siedlak SL et al (1996) APP transgenesis: approaches toward the development of animal models for Alzheimer disease neuropathology. Neurobiol Aging 17:153–171

    Article  CAS  PubMed  Google Scholar 

  92. Ashe K (2001) Learning and memory in transgenic mice modelling Alzhiemer’s disease. Learn Mem 8:301–308

    Article  CAS  PubMed  Google Scholar 

  93. Ashe KH (2005) Mechanisms of memory loss in Abeta and tau mouse models. Biochem Soc Trans 33:591–594

    Article  CAS  PubMed  Google Scholar 

  94. Dodart JC, Mathis C, Bales KR, Paul SM (2002) Does my mouse have Alzheimer’s disease? Genes Brain Behav 1:142–155

    Article  CAS  PubMed  Google Scholar 

  95. Eriksen JL, Janus CG (2007) Plaques, tangles, and memory loss in mouse models of neurodegeneration. Behav Genet 37:79–100

    Article  PubMed  Google Scholar 

  96. Higgins GA, Jacobsen H (2003) Transgenic mouse models of Alzheimer’s disease: phenotype and application. Behav Pharmacol 14:419–438

    CAS  PubMed  Google Scholar 

  97. Janus C, Phinney AL, Chishti MA, Westaway D (2001) New developments in animal models of Alzheimer’s disease. Curr Neurol Neurosci Rep 1:451–457

    Article  CAS  PubMed  Google Scholar 

  98. Price DL, Tanzi RE, Borchelt DR, Sisodia SS (1998) Alzheimer’s disease: genetic studies and transgenic models. Annu Rev Genet 32:461–493

    Article  CAS  PubMed  Google Scholar 

  99. Seabrook GR, Rosahl TW (1999) Transgenic animals relevant to Alzheimer’s disease. Neuropharmacology 38:1–17

    Article  CAS  PubMed  Google Scholar 

  100. van Leuven F (2000) Single and multiple transgenic mice as models for Alzheimer’s disease. Prog Neurobiol 61:305–312

    Article  PubMed  Google Scholar 

  101. Spires TL, Hyman BT (2005) Transgenic models of Alzheimer’s disease: learning from animals. NeuroRx 2:423–437

    Article  PubMed  PubMed Central  Google Scholar 

  102. Wong PC, Cai H, Borchelt DR, Price DL (2002) Genetically engineered mouse models of neurodegenerative diseases. Nat Neurosci 5:633–639

    Article  CAS  PubMed  Google Scholar 

  103. Hall GF, Yao J (2005) Modeling tauopathy: a range of complementary approaches. Biochim Biophys Acta 1739:224–239

    Article  CAS  PubMed  Google Scholar 

  104. Melrose HL, Lincoln SJ, Tyndall GM, Farrer MJ (2006) Parkinson’s disease: a rethink of rodent models. Exp Brain Res 173:196–204

    Article  PubMed  Google Scholar 

  105. Le Cudennec C, Faure A, Ly M, Delatour B (2008) One-year longitudinal evaluation of sensorimotor functions in APP751SL transgenic mice. Genes Brain Behav 7(Suppl 1):83–91

    Article  PubMed  Google Scholar 

  106. Cui S, Chesson C, Hope R (1993) Genetic variation within and between strains of outbred Swiss mice. Lab Anim 27:116–123

    Article  CAS  PubMed  Google Scholar 

  107. Festing MF (1974) Genetic reliability of commercially-bred laboratory mice. Lab Anim 8:265–270

    Article  CAS  PubMed  Google Scholar 

  108. Festing MF (1974) Genetic monitoring of laboratory mouse colonies in the Medical Research Council Accreditation Scheme for the suppliers of laboratory animals. Lab Anim 8:291–299

    Article  CAS  PubMed  Google Scholar 

  109. Crabbe JC, Wahlsten D, Dudek BC (1999) Genetics of mouse behavior: interactions with laboratory environment. Science 284:1670–1672

    Article  CAS  PubMed  Google Scholar 

  110. Wahlsten D, Metten P, Phillips TJ, Boehm SL 2nd, Burkhart-Kasch S et al (2003) Different data from different labs: lessons from studies of gene-environment interaction. J Neurobiol 54:283–311

    Article  PubMed  Google Scholar 

  111. Banbury Conference on genetic background in mice (1997) Mutant mice and neuroscience: recommendations concerning genetic background. Banbury Conference on genetic background in mice. Neuron 19:755–759

    Article  Google Scholar 

  112. Crawley JN, Belknap JK, Collins A, Crabbe JC, Frankel W et al (1997) Behavioral phenotypes of inbred mouse strains: implications and recommendations for molecular studies. Psychopharmacology (Berl) 132:107–124

    Article  CAS  Google Scholar 

  113. Takahashi JS, Pinto LH, Vitaterna MH (1994) Forward and reverse genetic approaches to behavior in the mouse. Science 264:1724–1733

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Dietrich WF, Lander ES, Smith JS, Moser AR, Gould KA et al (1993) Genetic identification of Mom-1, a major modifier locus affecting Min-induced intestinal neoplasia in the mouse. Cell 75:631–639

    Article  CAS  PubMed  Google Scholar 

  115. Gould KA, Luongo C, Moser AR, McNeley MK, Borenstein N et al (1996) Genetic evaluation of candidate genes for the Mom1 modifier of intestinal neoplasia in mice. Genetics 144:1777–1785

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Wahlsten D, Cooper SF, Crabbe JC (2005) Different rankings of inbred mouse strains on the Morris maze and a refined 4-arm water escape task. Behav Brain Res 165:36–51

    Article  PubMed  Google Scholar 

  117. Sidman RL, Green MC (1965) Retinal degeneration in the mouse: location of the Rd Locus in Linkage Group Xvii. J Hered 56:23–29

    CAS  PubMed  Google Scholar 

  118. Jimenez AJ, Garcia-Fernandez JM, Gonzalez B, Foster RG (1996) The spatio-temporal pattern of photoreceptor degeneration in the aged rd/rd mouse retina. Cell Tissue Res 284:193–202

    Article  CAS  PubMed  Google Scholar 

  119. Ogilvie JM, Speck JD (2002) Dopamine has a critical role in photoreceptor degeneration in the rd mouse. Neurobiol Dis 10:33–40

    Article  CAS  PubMed  Google Scholar 

  120. Guillery RW (1974) Visual pathways in albinos. Sci Am 230:44–54

    Article  CAS  PubMed  Google Scholar 

  121. Rice DS, Williams RW, Goldowitz D (1995) Genetic control of retinal projections in inbred strains of albino mice. J Comp Neurol 354:459–469

    Article  CAS  PubMed  Google Scholar 

  122. Lamb BT, Sisodia SS, Lawler AM, Slunt HH, Kitt CA et al (1993) Introduction and expression of the 400 kilobase amyloid precursor protein gene in transgenic mice [corrected]. Nat Genet 5:22–30

    Article  CAS  PubMed  Google Scholar 

  123. Chishti MA, Yang DS, Janus C, Phinney AL, Horne P et al (2001) Early-onset amyloid deposition and cognitive deficits in transgenic mice expressing a double mutant form of amyloid precursor protein 695. J Biol Chem 276:21562–21570

    Article  CAS  PubMed  Google Scholar 

  124. Hsiao K, Chapman P, Nilsen S, Eckman C, Harigaya Y et al (1996) Correlative memory deficits, Abeta elevation, and amyloid plaques in transgenic mice. Science 274:99–102

    Article  CAS  PubMed  Google Scholar 

  125. Hsiao KK, Borchelt DR, Olson K, Johannsdottir R, Kitt C et al (1995) Age-related CNS disorder and early death in transgenic FVB/N mice overexpressing Alzheimer amyloid precursor proteins. Neuron 15:1203–1218

    Article  CAS  PubMed  Google Scholar 

  126. Sturchler-Pierrat C, Abramowski D, Duke M, Wiederhold KH, Mistl C et al (1997) Two amyloid precursor protein transgenic mouse models with Alzheimer disease-like pathology. Proc Natl Acad Sci U S A 94:13287–13292

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Squire LR (1992) Memory and the hippocampus: a synthesis from findings with rats, monkeys, and humans. Psychol Rev 99:195–231

    Article  CAS  PubMed  Google Scholar 

  128. Barnes CA, Rao G, McNaughton BL (1996) Functional integrity of NMDA-dependent LTP induction mechanisms across the lifespan of F-344 rats. Learn Mem 3:124–137

    Article  CAS  PubMed  Google Scholar 

  129. Bliss TVP, Collingridge GL (1993) A synaptic model of memory: long-term potentiation in the hippocampus. Nature 361:31–39

    Article  CAS  PubMed  Google Scholar 

  130. Collingridge GL, Kehl SJ, McLennan H (1983) Excitatory amino acids in synaptic transmission in the Schaffer collateral-commissural pathway of the rat hippocampus. J Physiol (Lond) 334:33–46

    Article  CAS  Google Scholar 

  131. Eichenbaum H (1996) Learning from LTP: a comment on recent attempts to identify cellular and molecular mechanisms of memory. Learn Mem 3:61–73

    Article  CAS  PubMed  Google Scholar 

  132. Fazeli MS, Errington ML, Dolphin AC, Bliss TVP (1988) Long–term potentiation in the dentate gyrus of the anaesthetized rat is accompanied by an increase in protein efflux into push–pull cannula perfusates. Brain Res 473:51–59

    Article  CAS  PubMed  Google Scholar 

  133. Malenka RC, Nicoll RA (1993) NMDA-receptor-dependent synaptic plasticity: multiple forms and mechanisms. Trends Neurosci 16:521–527

    Article  CAS  PubMed  Google Scholar 

  134. Morris RGM (1989) Synaptic plasticity and learning: Selective impairment of learning in rats and blockade of long-term potentiation in vivo by the N-methyl-d-aspartate receptor antagonist AP5. J Neurosci 9:3040–3057

    CAS  PubMed  Google Scholar 

  135. Morris RG, Davis S, Butcher SP (1990) Hippocampal synaptic plasticity and NMDA receptors: a role in information storage? Philos Trans R Soc Lond B Biol Sci 329:187–204

    Article  CAS  PubMed  Google Scholar 

  136. O’Keefe J, Nadel L (1978) The hippocampus as a cognitive map. Oxford University Press, Oxford

    Google Scholar 

  137. Olton DS, Becker JT, Handelman GE (1979) Hippocampus space and memory. Behav Brain Sci 2:313–365

    Article  Google Scholar 

  138. Milner B, Scoville WB (1957) Loss of recent memory after bilateral hippocampal lesions. J Neurol Neurosurg Psychiatry 20:11–21

    Article  PubMed  PubMed Central  Google Scholar 

  139. Smith ML, Milner B (1981) The role of the right hippocampus in the recall of spatial location. Neuropsychologia 19:781–793

    Article  CAS  PubMed  Google Scholar 

  140. Milner B (1965) Visually-guided maze-learning in man: effects of bilateral hippocampal, bilateral frontal hippocampal lesions. Neuropsychologia 3:317–338

    Article  Google Scholar 

  141. Elgh E, Lindqvist Astot A, Fagerlund M, Eriksson S, Olsson T et al (2006) Cognitive dysfunction, hippocampal atrophy and glucocorticoid feedback in Alzheimer’s disease. Biol Psychiatry 59:155–161

    Article  CAS  PubMed  Google Scholar 

  142. Rodriguez G, Vitali P, Calvini P, Bordoni C, Girtler N et al (2000) Hippocampal perfusion in mild Alzheimer’s disease. Psychiatry Res 100:65–74

    Article  CAS  PubMed  Google Scholar 

  143. Carlesimo GA, Mauri M, Graceffa AM, Fadda L, Loasses A et al (1998) Memory performances in young, elderly, and very old healthy individuals versus patients with Alzheimer’s disease: evidence for discontinuity between normal and pathological aging. J Clin Exp Neuropsychol 20:14–29

    Article  CAS  PubMed  Google Scholar 

  144. Ghilardi MF, Alberoni M, Marelli S, Rossi M, Franceschi M et al (1999) Impaired movement control in Alzheimer’s disease. Neurosci Lett 260:45–48

    Article  CAS  PubMed  Google Scholar 

  145. Kavcic V, Duffy CJ (2003) Attentional dynamics and visual perception: mechanisms of spatial disorientation in Alzheimer’s disease. Brain 126:1173–1181

    Article  PubMed  Google Scholar 

  146. Monacelli AM, Cushman LA, Kavcic V, Duffy CJ (2003) Spatial disorientation in Alzheimer’s disease: the remembrance of things passed. Neurology 61:1491–1497

    Article  PubMed  Google Scholar 

  147. Pai MC, Jacobs WJ (2004) Topographical disorientation in community-residing patients with Alzheimer’s disease. Int J Geriatr Psychiatry 19:250–255

    Article  PubMed  Google Scholar 

  148. Rizzo M, Anderson SW, Dawson J, Nawrot M (2000) Vision and cognition in Alzheimer’s disease. Neuropsychologia 38:1157–1169

    Article  CAS  PubMed  Google Scholar 

  149. Janus C, Flores AY, Xu G, Borchelt DR (2015) Behavioral abnormalities in APP/PS1dE9 mouse model of AD-like pathology: comparative analysis across multiple behavioral domains. Neurobiol Aging 36:2519–2532

    Article  CAS  PubMed  Google Scholar 

  150. Crawley JN (2007) What’s wrong with my mouse?: Behavioural phenotypying of transgenic and knockout mice, 2nd edn. Wiley, New Jersey

    Book  Google Scholar 

  151. Whishaw IQ, Kolb B (2005) The behavior of the laboratory rat: a handbook with tests. Oxford University Press, Oxford

    Google Scholar 

  152. Crawley JN, Paylor R (1997) A proposed test battery and constellation of specific behavioural paradigms to investigate the behavioural phenotypes of transgenic and knockout mice. Horm Behav 31:197–211

    Article  CAS  PubMed  Google Scholar 

  153. Janus C (2004) Search strategies used by APP transgenic mice during navigation in the Morris water maze. Learn Mem 11:337–346

    Article  PubMed  PubMed Central  Google Scholar 

  154. Markowska AL, Long JM, Johnson CT, Olton DS (1993) Variable-interval probe test as a tool for repeated measurements of spatial memory in the water maze. Behav Neurosci 107:627–632

    Article  CAS  PubMed  Google Scholar 

  155. Spooner RIW, Thomson A, Hall J, Morris RGM, Salter SH (1994) The Atlantis platform: a new design and further developments of Buresova’s on-demand platform for the water maze. Learn Mem 1:203–211

    CAS  PubMed  Google Scholar 

  156. Dudchenko PA, Goodridge JP, Seiterle DA, Taube JS (1997) Effects of repeated disorientation on the acquisition of spatial tasks in rats: dissociation between the appetetive radial arm maze and aversive water maze. J Exp Psychol 23:194–210

    CAS  Google Scholar 

  157. Chapillon P, Debouzie A (2000) BALB/c mice are not so bad in the Morris water maze. Behav Brain Res 117:115–118

    Article  CAS  PubMed  Google Scholar 

  158. Whishaw IQ, Tomie JA (1996) Of mice and mazes: similarities between mice and rats on dry land but not water mazes. Physiol Behav 60:1191–1197

    Article  CAS  PubMed  Google Scholar 

  159. Wahlsten D, Metten P, Crabbe JC (2003) A rating scale for wildness and ease of handling laboratory mice: results for 21 inbred strains tested in two laboratories. Genes Brain Behav 2:71–79

    Article  CAS  PubMed  Google Scholar 

  160. Corcoran KA, Lu Y, Turner RS, Maren S (2002) Overexpression of hAPPswe impairs rewarded alternation and contextual fear conditioning in a transgenic mouse model of Alzheimer’s disease. Learn Mem 9:243–252

    Article  PubMed  PubMed Central  Google Scholar 

  161. Janus C, Welzl H, Hanna A, Lovasic L, Lane N et al (2004) Impaired conditioned taste aversion learning in APP transgenic mice. Neurobiol Aging 25:1213–1219

    Article  PubMed  Google Scholar 

  162. Mumby DG (2001) Perspectives on object-recognition memory following hippocampal damage: lessons from studies in rats. Behav Brain Res 127:159–181

    Article  CAS  PubMed  Google Scholar 

  163. Kumar-Singh S, Dewachter I, Moechars D, Lubke U, De Jonghe C et al (2000) Behavioral disturbances without amyloid deposits in mice overexpressing human amyloid precursor protein with Flemish (A692G) or Dutch (E693Q) mutation. Neurobiol Dis 7:9–22

    Article  CAS  PubMed  Google Scholar 

  164. Lalonde R, Dumont M, Staufenbiel M, Sturchler-Pierrat C, Strazielle C (2002) Spatial learning, exploration, anxiety, and motor coordination in female APP23 transgenic mice with the Swedish mutation. Brain Res 956:36–44

    Article  CAS  PubMed  Google Scholar 

  165. Gerlai R, Fitch T, Bales KR, Gitter BD (2002) Behavioral impairment of APP(V717F) mice in fear conditioning: is it only cognition? Behav Brain Res 136:503–509

    Article  PubMed  Google Scholar 

  166. Wahlsten D, Bachmanov A, Finn DA, Crabbe JC (2006) Stability of inbred mouse strain differences in behavior and brain size between laboratories and across decades. Proc Natl Acad Sci U S A 103:16364–16369

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Scott S, Kranz JE, Cole J, Lincecum JM, Thompson K et al (2008) Design, power, and interpretation of studies in the standard murine model of ALS. Amyotroph Lateral Scler 9:4–15

    Article  CAS  PubMed  Google Scholar 

  168. Machlis L, Dodd FWD, Fentress JC (1985) The pooling fallacy: problems arising when individuals contribute more than one observation to the data set. Zeitschrifte fur Tierpsychologie 68:201–214

    Article  Google Scholar 

  169. Billings LM, Oddo S, Green KN, McGaugh JL, LaFerla FM (2005) Intraneuronal Abeta causes the onset of early Alzheimer’s disease-related cognitive deficits in transgenic mice. Neuron 45:675–688

    Article  CAS  PubMed  Google Scholar 

  170. Stevens J (1990) Intermediate statistics: a modern approach. Lawrence Erlbaum Associates, Hillsdale, New Jersey

    Google Scholar 

  171. Popper K (1963) Conjectures and refutations. Routledge and Keagan Paul, London

    Google Scholar 

  172. Brown AP, Dinger N, Levine BS (2000) Stress produced by gavage administration in the rat. Contemp Top Lab Anim Sci 39:17–21

    CAS  PubMed  Google Scholar 

  173. Walker MK, Boberg JR, Walsh MT, Wolf V, Trujillo A et al (2012) A less stressful alternative to oral gavage for pharmacological and toxicological studies in mice. Toxicol Appl Pharmacol 260:65–69

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Balcombe JP, Barnard ND, Sandusky C (2004) Laboratory routines cause animal stress. Contemp Top Lab Anim Sci 43:42–51

    CAS  PubMed  Google Scholar 

  175. Hurst JL, West RS (2010) Taming anxiety in laboratory mice. Nat Methods 1–2

    Google Scholar 

  176. Daftary SS, Panksepp J, Dong Y, Saal DB (2009) Stress-induced, glucocorticoid-dependent strengthening of glutamatergic synaptic transmission in midbrain dopamine neurons. Neurosci Lett 452:273–276

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Dobrakovova M, Jurcovicova J (1984) Corticosterone and prolactin responses to repeated handling and transfer of male rats. Exp Clin Endocrinol 83:21–27

    Article  CAS  PubMed  Google Scholar 

  178. Korte SM (2001) Corticosteroids in relation to fear, anxiety and psychopathology. Neurosci Biobehav Rev 25:117–142

    Article  CAS  PubMed  Google Scholar 

  179. Cullinan WE, Ziegler DR, Herman JP (2008) Functional role of local GABAergic influences on the HPA axis. Brain Struct Funct 213:63–72

    Article  CAS  PubMed  Google Scholar 

  180. Figueiredo HF, Ulrich-Lai YM, Choi DC, Herman JP (2007) Estrogen potentiates adrenocortical responses to stress in female rats. Am J Physiol Endocrinol Metab 292:E1173–E1182

    Article  CAS  PubMed  Google Scholar 

  181. Jankord R, Herman JP (2008) Limbic regulation of hypothalamo-pituitary-adrenocortical function during acute and chronic stress. Ann N Y Acad Sci 1148:64–73

    Article  PubMed  PubMed Central  Google Scholar 

  182. Razzoli M, Karsten C, Yoder JM, Bartolomucci A, Engeland WC (2014) Chronic subordination stress phase advances adrenal and anterior pituitary clock gene rhythms. Am J Physiol Regul Integr Comp Physiol 307:R198–R205

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Abrous DN, Desjardins S, Sorin B, Hancock D, Le Moal M et al (1996) Changes in striatal immediate early gene expression following neonatal dopaminergic lesion and effects of intrastriatal dopaminergic transplants. Neuroscience 73:145–159

    Article  CAS  PubMed  Google Scholar 

  184. Choi DC, Nguyen MM, Tamashiro KL, Ma LY, Sakai RR et al (2006) Chronic social stress in the visible burrow system modulates stress-related gene expression in the bed nucleus of the stria terminalis. Physiol Behav 89:301–310

    Article  CAS  PubMed  Google Scholar 

  185. Herman JP, Sherman TG (1993) Acute stress upregulates vasopressin gene expression in parvocellular neurons of the hypothalamic paraventricular nucleus. Ann N Y Acad Sci 689:546–549

    Article  CAS  PubMed  Google Scholar 

  186. Ostrander MM, Richtand NM, Herman JP (2003) Stress and amphetamine induce Fos expression in medial prefrontal cortex neurons containing glucocorticoid receptors. Brain Res 990:209–214

    Article  CAS  PubMed  Google Scholar 

  187. Ostrander MM, Ulrich-Lai YM, Choi DC, Flak JN, Richtand NM et al (2009) Chronic stress produces enduring decreases in novel stress-evoked c-fos mRNA expression in discrete brain regions of the rat. Stress 12:469–477

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Senba E, Ueyama T (1997) Stress-induced expression of immediate early genes in the brain and peripheral organs of the rat. Neurosci Res 29:183–207

    Article  CAS  PubMed  Google Scholar 

  189. Choi DC, Furay AR, Evanson NK, Ostrander MM, Ulrich-Lai YM et al (2007) Bed nucleus of the stria terminalis subregions differentially regulate hypothalamic-pituitary-adrenal axis activity: implications for the integration of limbic inputs. J Neurosci 27:2025–2034

    Article  CAS  PubMed  Google Scholar 

  190. Dent G, Choi DC, Herman JP, Levine S (2007) GABAergic circuits and the stress hyporesponsive period in the rat: ontogeny of glutamic acid decarboxylase (GAD) 67 mRNA expression in limbic-hypothalamic stress pathways. Brain Res 1138:1–9

    Article  CAS  PubMed  Google Scholar 

  191. Figueiredo HF, Bruestle A, Bodie B, Dolgas CM, Herman JP (2003) The medial prefrontal cortex differentially regulates stress-induced c-fos expression in the forebrain depending on type of stressor. Eur J Neurosci 18:2357–2364

    Article  PubMed  Google Scholar 

  192. Figueiredo HF, Dolgas CM, Herman JP (2002) Stress activation of cortex and hippocampus is modulated by sex and stage of estrus. Endocrinology 143:2534–2540

    Article  CAS  PubMed  Google Scholar 

  193. Flak JN, Ostrander MM, Tasker JG, Herman JP (2009) Chronic stress-induced neurotransmitter plasticity in the PVN. J Comp Neurol 517:156–165

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Herman JP, Flak J, Jankord R (2008) Chronic stress plasticity in the hypothalamic paraventricular nucleus. Prog Brain Res 170:353–364

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Jankord R, Zhang R, Flak JN, Solomon MB, Albertz J et al (2010) Stress activation of IL-6 neurons in the hypothalamus. Am J Physiol Regul Integr Comp Physiol 299:R343–R351

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Ziegler DR, Cullinan WE, Herman JP (2005) Organization and regulation of paraventricular nucleus glutamate signaling systems: N-methyl-d-aspartate receptors. J Comp Neurol 484:43–56

    Article  CAS  PubMed  Google Scholar 

  197. Morton DB, Jennings M, Buckwell A, Ewbank R, Godfrey C et al (2001) Refining procedures for the administration of substances. Report of the BVAAWF/FRAME/RSPCA/UFAW Joint Working Group on Refinement. British Veterinary Association Animal Welfare Foundation/Fund for the Replacement of Animals in Medical Experiments/Royal Society for the Prevention of Cruelty to Animals/Universities Federation for Animal Welfare. Lab Anim 35:1–41

    Article  CAS  PubMed  Google Scholar 

  198. McEwen BS (2000) The neurobiology of stress: from serendipity to clinical relevance. Brain Res 886:172–189

    Article  CAS  PubMed  Google Scholar 

  199. Lapin IP (1995) Only controls: effect of handling, sham injection, and intraperitoneal injection of saline on behavior of mice in an elevated plus-maze. J Pharmacol Toxicol Methods 34:73–77

    Article  CAS  PubMed  Google Scholar 

  200. de Meijer VE, Le HD, Meisel JA, Puder M (2010) Repetitive orogastric gavage affects the phenotype of diet-induced obese mice. Physiol Behav 100:387–393

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  201. Hilakivi-Clarke LA (1992) Injection of vehicle is not a stressor in Porsolt’s swim test. Pharmacol Biochem Behav 42:193–196

    Article  CAS  PubMed  Google Scholar 

  202. Gilbar PJ (1999) A guide to enternal drug administration in palliative care. J Pain Symptom Manage 17:197–207

    Article  CAS  PubMed  Google Scholar 

  203. Smolensky MH, Peppas NA (2007) Chronobiology, drug delivery, and chronotherapeutics. Adv Drug Deliv Rev 59:828–851

    Article  CAS  PubMed  Google Scholar 

  204. Turner PV, Brabb T, Pekow C, Vasbinder MA (2011) Administration of substances to laboratory animals: routes of administration and factors to consider. J Am Assoc Lab Anim Sci 50:600–613

    CAS  PubMed  PubMed Central  Google Scholar 

  205. Turner PV, Pekow C, Vasbinder MA, Brabb T (2011) Administration of substances to laboratory animals: equipment considerations, vehicle selection, and solute preparation. J Am Assoc Lab Anim Sci 50:614–627

    CAS  PubMed  PubMed Central  Google Scholar 

  206. Machholz E, Mulder G, Ruiz C, Corning BF, Pritchett-Corning KR (2012) Manual restraint and common compound administration routes in mice and rats., J Vis Exp

    Google Scholar 

  207. Qu WM, Huang ZL, Matsumoto N, Xu XH, Urade Y (2008) Drug delivery through a chronically implanted stomach catheter improves efficiency of evaluating wake-promoting components. J Neurosci Methods 175:58–63

    Article  CAS  PubMed  Google Scholar 

  208. Prittie J, Barton L (2004) Route of nutrient delivery. Clin Tech Small Anim Pract 19:6–8

    Article  PubMed  Google Scholar 

  209. Brayne C, Gill C, Huppert FA, Barkley C, Gehlhaar E et al (1998) Vascular risks and incident dementia: results from a cohort study of the very old. Dement Geriatr Cogn Disord 9:175–180

    Article  CAS  PubMed  Google Scholar 

  210. Corder EH, Saunders AM, Strittmatter WJ, Schmechel DE, Gaskell PC Jr et al (1995) Apolipoprotein E, survival in Alzheimer’s disease patients, and the competing risks of death and Alzheimer’s disease. Neurology 45:1323–1328

    Article  CAS  PubMed  Google Scholar 

  211. Fratiglioni L, Ahlbom A, Viitanen M, Winblad B (1993) Risk factors for late-onset alzheimer’s disease: a population-based, case-control study. Ann Neurol 33:258–266

    Google Scholar 

  212. Burns JM, Mayo MS, Anderson HS, Smith HJ, Donnelly JE (2008) Cardiorespiratory fitness in early-stage Alzheimer disease. Alzheimer Dis Assoc Disord 22:39–46

    Article  PubMed  Google Scholar 

  213. Colcombe SJ, Erickson KI, Raz N, Webb AG, Cohen NJ et al (2003) Aerobic fitness reduces brain tissue loss in aging humans. J Gerontol A Biol Sci Med Sci 58:176–180

    Article  PubMed  Google Scholar 

  214. Larson EB (2008) Physical activity for older adults at risk for Alzheimer disease. JAMA 300:1077–1079

    Article  CAS  PubMed  Google Scholar 

  215. DeNelsky GY, Denenberg VH (1967) Infantile stimulation and adult exploratory behaviour in the rat: effects of handling upon visual variation-seeking. Anim Behav 15:568–573

    Article  CAS  PubMed  Google Scholar 

  216. DeNelsky GY, Denenberg VH (1967) Infantile stimulation and adult exploratory behavior: effects of handling upon tactual variation seeking. J Comp Physiol Psychol 63:309–312

    Article  CAS  PubMed  Google Scholar 

  217. Meaney MJ, Aitken DH, van Berkel C, Bhatnagar S, Sapolsky RM (1988) Effect of neonatal handling on age-related impairments associated with the hippocampus. Science 239:766–768

    Article  CAS  PubMed  Google Scholar 

  218. Meaney MJ, Aitken DH, Viau V, Sharma S, Sarrieau A (1989) Neonatal handling alters adrenocortical negative feedback sensitivity and hippocampal type II glucocorticoid receptor binding in the rat. Neuroendocrinology 50:597–604

    Article  CAS  PubMed  Google Scholar 

  219. Tang AC (2001) Neonatal exposure to novel environment enhances hippocampal-dependent memory function during infancy and adulthood. Learn Mem 8:257–264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  220. Tremml P, Lipp HP, Muller U, Ricceri L, Wolfer DP (1998) Neurobehavioral development, adult openfield exploration and swimming navigation learning in mice with a modified beta-amyloid precursor protein gene. Behav Brain Res 95:65–76

    Article  CAS  PubMed  Google Scholar 

  221. Adamec RE, Sayin U, Brown A (1991) The effects of corticotrophin releasing factor (CRF) and handling stress on behavior in the elevated plus-maze test of anxiety. J Psychopharmacol 5:175–186

    Article  CAS  PubMed  Google Scholar 

  222. Brett RR, Pratt JA (1990) Chronic handling modifies the anxiolytic effect of diazepam in the elevated plus-maze. Eur J Pharmacol 178:135–138

    Article  CAS  PubMed  Google Scholar 

  223. Rosenberg MJ (1969) The conditions and consequences of evaluation apprehension. In: Rosnow RL, Rosenthal R (eds) Artifact in behavioral research. Academic, New York

    Google Scholar 

  224. McCambridge J, Witton J, Elbourne DR (2014) Systematic review of the Hawthorne effect: new concepts are needed to study research participation effects. J Clin Epidemiol 67:267–277

    Article  PubMed  PubMed Central  Google Scholar 

  225. Berthelot JM, Le Goff B, Maugars Y (2011) The Hawthorne effect: stronger than the placebo effect? Joint Bone Spine 78:335–336

    Article  PubMed  Google Scholar 

  226. SantaCruz K, Lewis J, Spires T, Paulson J, Kotilinek L et al (2005) Tau suppression in a neurodegenerative mouse model improves memory function. Science 309:476–481

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  227. Ramsden M, Kotilinek L, Forster C, Paulson J, McGowan E et al (2005) Age-dependent neurofibrillary tangle formation, neuron loss, and memory impairment in a mouse model of human tauopathy (P301L). J Neurosci 25:10637–10647

    Article  CAS  PubMed  Google Scholar 

  228. Spires TL, Orne JD, SantaCruz K, Pitstick R, Carlson GA et al (2006) Region-specific dissociation of neuronal loss and neurofibrillary pathology in a mouse model of tauopathy. Am J Pathol 168:1598–1607

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  229. Yue M, Hanna A, Wilson J, Roder H, Janus C (2011) Sex difference in pathology and memory decline in rTg4510 mouse model of tauopathy. Neurobiol Aging 32:590–603

    Article  CAS  PubMed  Google Scholar 

  230. Treit D, Fundytus M (1988) Thigmotaxis as a test for anxiolytic activity in rats. Pharmacol Biochem Behav 31:959–962

    Article  CAS  PubMed  Google Scholar 

  231. Wolfer DP, Stagljar-Bozicevic M, Errington ML, Lipp HP (1998) Spatial memory and learning in transgenic mice: fact or artifact? News Physiol Sci 13:118–123

    PubMed  Google Scholar 

  232. Deacon RM (2006) Housing, husbandry and handling of rodents for behavioral experiments. Nat Protoc 1:936–946

    Article  PubMed  Google Scholar 

  233. Schneider LS, Sano M (2009) Current Alzheimer’s disease clinical trials: methods and placebo outcomes. Alzheimers Dement 5:388–397

    Article  PubMed  PubMed Central  Google Scholar 

  234. Benatar M (2007) Lost in translation: treatment trials in the SOD1 mouse and in human ALS. Neurobiol Dis 26:1–13

    Article  CAS  PubMed  Google Scholar 

  235. Rogers DC, Fisher EM, Brown SD, Peters J, Hunter AJ et al (1997) Behavioral and functional analysis of mouse phenotype: SHIRPA, a proposed protocol for comprehensive phenotype assessment. Mamm Genome 8:711–713

    Article  CAS  PubMed  Google Scholar 

  236. Morris R (1984) Developments of a water-maze procedure for studying spatal learning in the rat. J Neurosci Methods 11:47–60

    Article  CAS  PubMed  Google Scholar 

  237. Morris RGM (1981) Spatial localization does not require the presence of local cues. Learn Motiv 12:239–260

    Article  Google Scholar 

  238. Wolfer DP, Lipp HP (2000) Dissecting the behaviour of transgenic mice: is it the mutation, the genetic background, or the environment? Exp Physiol 85:627–634

    Article  CAS  PubMed  Google Scholar 

  239. Gass P, Wolfer DP, Balschun D, Rudolph D, Frey U et al (1998) Deficits in memory tasks of mice with CREB mutations depend on gene dosage. Learn Mem 5:274–288

    CAS  PubMed  PubMed Central  Google Scholar 

  240. Wehner JM, Sleight S, Upchurch M (1990) Hippocampal protein kinase C activity is reduced in poor spatial learners. Brain Res 523:181–187

    Article  CAS  PubMed  Google Scholar 

  241. Westerman MA, Cooper-Blacketer D, Mariash A, Kotilinek L, Kawarabayashi T et al (2002) The relationship between Abeta and memory in the Tg2576 mouse model of Alzheimer’s disease. J Neurosci 22:1858–1867

    CAS  PubMed  Google Scholar 

  242. Chen G, Chen KS, Knox J, Inglis J, Bernard A et al (2000) A learning deficit related to age and beta-amyloid plaques in a mouse model of Alzheimer’s disease. Nature 408:975–979

    Article  CAS  PubMed  Google Scholar 

  243. Logue SF, Paylor R, Wehner JM (1997) Hippocampal lesions cause learning deficits in inbred mice in the Morris water maze and conditioned-fear task. Behav Neurosci 111:104–113

    Article  CAS  PubMed  Google Scholar 

  244. Bohut MC, Soffié M, Poucet B (1989) Scopolamine affects the cognitive processes involved in selective object exploration more than locomotor activity. Psychobiology 17:409–417

    Google Scholar 

  245. Save E, Poucet B, Foreman N, M-C B (1992) Object exploration and reactions to spatial and nonspatial changes in hooded rats following damage to parietal cortex or hippocampal formation. Behav Neurosci 106:447–456

    Article  CAS  PubMed  Google Scholar 

  246. Hammond RS, Tull LE, Stackman RW (2004) On the delay-dependent involvement of the hippocampus in object recognition memory. Neurobiol Learn Mem 82:26–34

    Article  PubMed  Google Scholar 

  247. Vnek N, Rothblat LA (1996) The hippocampus and long-term object memory in the rat. J Neurosci 16:2780–2787

    CAS  PubMed  Google Scholar 

  248. LeDoux JE (1993) Emotional memory systems in the brain. Behav Brain Res 58:69–79

    Article  CAS  PubMed  Google Scholar 

  249. Phillips RG, LeDoux JE (1992) Differential contribution of amygdala and hippocampus to cued and contextual fear conditioning. Behav Neurosci 106:274–285

    Article  CAS  PubMed  Google Scholar 

  250. LeDoux JE (2000) Emotion circuits in the brain. Annu Rev Neurosci 23:155–184

    Article  CAS  PubMed  Google Scholar 

  251. Repa JC, Muller J, Apergis J, Desrochers TM, Zhou Y et al (2001) Two different lateral amygdala cell populations contribute to the initiation and storage of memory. Nat Neurosci 4:724–731

    Article  CAS  PubMed  Google Scholar 

  252. McEchron MD, Bouwmeester H, Tseng W, Weiss C, Disterhoft JF (1998) Hippocampectomy disrupts auditory trace fear conditioning and contextual fear conditioning in the rat. Hippocampus 8:638–646

    Article  CAS  PubMed  Google Scholar 

  253. Bourtchuladze R, Frenguelli B, Blendy J, Cioffi D, Schutz G et al (1994) Deficient long-term memory in mice with a targeted mutation of the cAMP-responsive element-binding protein. Cell 79:59–68

    Article  CAS  PubMed  Google Scholar 

  254. Garcia J, Hankins WG, Rusinak KW (1976) Flavor aversion studies. Science 192:265–266

    Article  CAS  PubMed  Google Scholar 

  255. Revusky SH, Bedarf EW (1967) Association of illness with prior ingestion of novel foods. Science 155:212–214

    Article  Google Scholar 

  256. Rozin P, Kalat JW (1971) Specific hungers and poison avoidance as adaptive specializations of learning. Psychol Rev 78:459–486

    Article  CAS  PubMed  Google Scholar 

  257. Garcia J, Kimeldorf DJ, Koeling RA (1955) Conditioned aversion to saccharin resulting from exposure to gamma radiation. Science 122:157–158

    CAS  PubMed  Google Scholar 

  258. Bures J, Bermudez-Rattoni F, Yanamoto T (1998) Conditioned taste aversion: memory of a special kind. Oxford University Press, Oxford

    Book  Google Scholar 

  259. Rosenblum K, Meiri N, Dudai Y (1993) Taste memory: the role of protein synthesis in gustatory cortex. Behav Neural Biol 59:49–56

    Article  CAS  PubMed  Google Scholar 

  260. Kruger L, Mantyh PW (1989) Gustatory and related chemosensory systems. In: Björklund A, Hökfelt T, Swanson LW (eds) Integrated systems of the CNS, Part II. Elsevier Science, Amsterdam, pp 323–411

    Google Scholar 

  261. Lamprecht R, Dudai Y (1996) Transient expression of c-Fos in rat amygdala during training is required for encoding conditioned taste aversion memory. Learn Mem 3:31–41

    Article  CAS  PubMed  Google Scholar 

  262. Lamprecht R, Hazvi S, Dudai Y (1997) cAMP response element-binding protein in the amygdala is required for long- but not short-term conditioned taste aversion memory. J Neurosci 17:8443–8450

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher Janus .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Janus, C., Hernandez, C., deLelys, V., Roder, H., Welzl, H. (2016). Better Utilization of Mouse Models of Neurodegenerative Diseases in Preclinical Studies: From the Bench to the Clinic. In: Proetzel, G., Wiles, M. (eds) Mouse Models for Drug Discovery. Methods in Molecular Biology, vol 1438. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3661-8_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3661-8_18

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3659-5

  • Online ISBN: 978-1-4939-3661-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics