Skip to main content

Review of Mouse Models Applied to the Study of Asthma

  • Protocol
  • First Online:
Molecular Genetics of Asthma

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1434))

Abstract

The diversity of asthma phenotypes increases its complexity. Animal models represent a useful tool to elucidate the pathophysiological mechanisms involved in both allergic and nonallergic asthma, as well as to identify potential targets for the development of new treatments. Among all available animal models, mice offer significant advantages for the study of asthma. In this chapter, the applications of mouse models to the study of asthma will be reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kim HY, DeKruyff RH, Umetsu DT (2010) The many paths to asthma: phenotype shaped by innate and adaptive immunity. Nat Immunol 11(7):577–584

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Agache I, Akdis C, Jutel M et al (2012) Untangling asthma phenotypes and endotypes. Allergy 67:835–846

    Article  CAS  PubMed  Google Scholar 

  3. Jin H, He R, Oyoshi M et al (2009) Animal models of atopic dermatitis. J Invest Dermatol 129:31–40

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Niederkorn JY (2008) Immune regulatory mechanisms in allergic conjunctivitis: insights from mouse models. Curr Opin Allergy Clin Immunol 8:472–476

    Article  PubMed  PubMed Central  Google Scholar 

  5. Dearman RJ, Kimber I (2007) A mouse model for food allergy using intraperitoneal sensitization. Methods 41:91–98

    Article  CAS  PubMed  Google Scholar 

  6. Wagner JG, Harkema JR (2007) Rodent models of allergic rhinitis: relevance to human pathophysiology. Curr Allergy Asthma Rep 7:134–140

    Article  PubMed  Google Scholar 

  7. Shin YS, Takeda K, Gelfand EW et al (2009) Understanding asthma using animal models. Allergy Asthma Immunol Res 1:10–18

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Kips JC, Anderson GP, Fredberg JJ et al (2003) Murine models of asthma. Eur Respir J 22:374–382

    Article  CAS  PubMed  Google Scholar 

  9. Holt PG, Macaubas C, Stumbles PA et al (1999) The role of allergy in the development of asthma. Nature 402:B12–B17

    Article  CAS  PubMed  Google Scholar 

  10. Maddox L, Schwartz DA (2002) The pathophysiology of asthma. Annu Rev Med 53:477–498

    Article  CAS  PubMed  Google Scholar 

  11. Robays LJ, Maes T, Joos GF et al (2009) Between a cough and a wheeze: dendritic cells at the nexus of tobacco smoke-induced allergic airway sensitization. Mucosal Immunol 2:206–219

    Article  CAS  PubMed  Google Scholar 

  12. Li N, Hao M, Phalen RF et al (2003) Particulate air pollutants and asthma. A paradigm for the role of oxidative stress in PM-induced adverse health effects. Clin Immunol 109:250–265

    Article  CAS  PubMed  Google Scholar 

  13. Johnston RA, Zhu M, Rivera-Sanchez YM et al (2007) Allergic airway responses in obese mice. Am J Respir Crit Care Med 176:650–658

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Kim EY, Battaile JT, Patel AC et al (2008) Persistent activation of an innate immune response translates respiratory viral infection into chronic lung disease. Nat Med 14:633–640

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Pichavant M et al (2008) Ozone exposure in a mouse model induces airway hyperreactivity that requires the presence of natural killer T cells and IL-17. J Exp Med 205:385–393

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Hadeiba H, Corry DB, Locksley RM (2000) Baseline airway hyperreactivity in A/J mice is not mediated by cells of the adaptive immune system. J Immunol 164:4933–4940

    Article  CAS  PubMed  Google Scholar 

  17. Van Eerdewegh P, Little RD, Dupuis J et al (2002) Association of the ADAM33 gene with asthma and bronchial hyperresponsiveness. Nature 418:426–430

    Article  PubMed  Google Scholar 

  18. Haitchi HM, Bassett D, Bucchieri F et al (2009) Induction of a disintegrin and metalloprotease 33 during embryonic lung development and the influence of IL-13 or maternal allergy. J Allergy Clin Immunol 124:590–597

    Article  CAS  PubMed  Google Scholar 

  19. Fairbairn SM, Page CP, Lees P et al (1993) Early neutrophil but not eosinophil or platelet recruitment to the lungs of allergic horses following antigen exposure. Clin Exp Allergy 23:821–828

    Article  CAS  PubMed  Google Scholar 

  20. Colasurdo GN, Hemming VG, Prince GA et al (1998) Human respiratory syncytial virus produces prolonged alterations of neural control in airways of developing ferrets. Am J Respir Crit Care Med 157:1506–1511

    Article  CAS  PubMed  Google Scholar 

  21. Toward TJ, Broadley KJ (2004) Early and late bronchoconstriction, airway hyperreactivity, leukocyte influx and lung histamine and nitric oxide after inhaled antigen: effects of dexamethasone and rolipram. Clin Exp Allergy 34:91–102

    Article  CAS  PubMed  Google Scholar 

  22. Chen W, Alley MR, Manktelow BW (1991) Airway inflammation in sheep with acute airway hypersensitivity to inhaled Ascaris suum. Int Arch Allergy Appl Immunol 96:218–223

    Article  CAS  PubMed  Google Scholar 

  23. Johnson HG, Stout BK (1993) Late phase bronchoconstriction and eosinophilia as well as methacholine hyperresponsiveness in Ascaris- sensitive rhesus monkeys were reversed by oral administration of U-83836E. Int Arch Allergy Immunol 100:362–366

    Article  CAS  PubMed  Google Scholar 

  24. Dietrich WF, Miller J, Steen R et al (1996) A comprehensive genetic map of the mouse genome. Nature 380:149–152

    Article  CAS  PubMed  Google Scholar 

  25. Elias JA, Lee CG, Zheng T et al (2003) New insights into the pathogenesis of asthma. J Clin Invest 111:291–297

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Fattouh R, Pouladi MA, Alvarez D et al (2005) House dust mite facilitates ovalbumin-specific allergic sensitization and airway inflammation. Am J Respir Crit Care Med 172:314–321

    Article  PubMed  Google Scholar 

  27. Mehlhop PD, VandeRijn M, Goldberg AB et al (1997) Allergen induced bronchial hyperreactivity and eosinophilic inflammation occur in the absence of IgE in a mouse model of asthma. Proc Natl Acad Sci U S A 94:1344–1349

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Zosky GR, Sly PD (2007) Animal models of asthma. Clin Exp Allergy 37:973–988

    Article  CAS  PubMed  Google Scholar 

  29. Whitehead GS, Walker JKL, Berman KG et al (2003) Allergen-induced airway disease is mouse strain dependent. Am J Physiol 285:L32–L42

    CAS  Google Scholar 

  30. WillsKarp M, Ewart SL (1997) The genetics of allergen-induced airway hyperresponsiveness in mice. Am J Respir Crit Care Med 156:S89–S96

    Article  CAS  Google Scholar 

  31. Brewer JM, Conacher M, Hunter CA et al (1999) Aluminium hydroxide adjuvant initiates strong antigen-specific Th2 responses in the absence of IL-4 or IL-13 mediated signaling. J Immunol 163:6448–6454

    CAS  PubMed  Google Scholar 

  32. Schneider T, van Velzen D, Moqbel R et al (1997) Kinetics and quantitation of eosinophil and neutrophil recruitment to allergic lung inflammation in a brown Norway rat model. Am J Respir Cell Mol Biol 17:702–712

    Article  CAS  PubMed  Google Scholar 

  33. Nakagome K, Dohi M, Okunishi K et al (2005) Antigen-sensitized CD4(1)CD62l(low) memory/effector T helper 2 cells can induce airway hyperresponsiveness in an antigen free setting. Respir Res 6:46

    Article  PubMed  PubMed Central  Google Scholar 

  34. Farraj AK, Harkema JR, Jan TR et al (2003) Immune responses in the lung and local lymph node of A/J mice to intranasal sensitization and challenge with adjuvant-free ovalbumin. Toxicol Pathol 31:432–447

    CAS  PubMed  Google Scholar 

  35. Hogan SP, Koskinen A, Matthaei Ki et al (1998) Interleukin-5 producing CD4(1) T cells play a pivotal role in aeroallergen-induced eosinophilia, bronchial hyperreactivity, and lung damage in mice. Am J Respir Crit Care Med 157:210–218

    Article  CAS  PubMed  Google Scholar 

  36. Rose MC, Voynow JA (2006) Respiratory tract mucin genes and mucin glycoproteins in health and disease. Physiol Rev 86:245–278

    Article  CAS  PubMed  Google Scholar 

  37. Young HWJ, Sun CX, Evans CM et al (2006) A adenosine receptor signaling contributes to airway mucin secretion after allergen challenge. Am J Respir Cell Mol Biol 35:549–558

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. James A (2005) Remodelling of airway smooth muscle in asthma: what sort do you have? Clin Exp Allergy 35:703–707

    Article  CAS  PubMed  Google Scholar 

  39. Kumar RK, Foster PS (2002) Modeling allergic asthma in mice—pitfalls and opportunities. Am J Respir Cell Mol Biol 27:267–272

    Article  CAS  PubMed  Google Scholar 

  40. Temelkovski J, Hogan SP, Shepherd DP et al (1998) An improved murine model of asthma: selective airway inflammation, epithelial lesions and increased methacholine responsiveness following chronic exposure to aerosolised allergen. Thorax 53:849–856

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Gern JE, Lemanske RF, Busse WW (1999) Early life origins of asthma. J Clin Invest 104:837–843

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Holt PG, Sly PD (2002) Interactions between RSV infection, asthma, and atopy: unraveling the complexities. J Exp Med 196:1271–1275

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Illi S, von Mutius E, Lau S et al (2006) Perennial allergen sensitisation early in life and chronic asthma in children: a birth cohort study. Lancet 368:763–770

    Article  PubMed  Google Scholar 

  44. Persson CGA, Erjefalt JS, Korsgren M et al (1997) The mouse trap. Trends Pharmacol Sci 18:465–467

    Article  CAS  PubMed  Google Scholar 

  45. Celedon JC, Litonjua AA, Ryan L et al (2002) Exposure to cat allergen, maternal history of asthma, and wheezing in first 5 years of life. Lancet 360:781–782

    Article  PubMed  Google Scholar 

  46. Bettinelli D, Kays C, Bailliart O et al (2002) Effect of gravity on chest wall mechanics. J Appl Physiol 92:709–716

    Article  CAS  PubMed  Google Scholar 

  47. Gomes RFM, Shen X, Ramchandani R et al (2000) Comparative respiratory system mechanics in rodents. J Appl Physiol 89:908–916

    CAS  PubMed  Google Scholar 

  48. Karol MH (1994) Animal models of occupational asthma. Eur Respir J 7:555–568

    Article  CAS  PubMed  Google Scholar 

  49. Ewart SL, Kuperman D, Schadt E et al (2000) Quantitative trait loci controlling allergen-induced airway hyperresponsiveness in inbred mice. Am J Respir Cell Mol Biol 23:537–545

    Article  CAS  PubMed  Google Scholar 

  50. McIntire JJ, Umetsu SE, Akbari O et al (2001) Identification of Tapr (an airway hyperreactivity regulatory locus) and the linked Tim gene family. Nat Immunol 2:1109–1116

    Article  CAS  PubMed  Google Scholar 

  51. Fuchs B, Braun A (2008) Improved mouse models of allergy and allergic asthma—chances beyond ovalbumin. Curr Drug Targets 9:495–502

    Article  CAS  PubMed  Google Scholar 

  52. Sarpong SB, Zhang LY, Kleeberger SR (2003) A novel mouse model of asthma. Int Arch Allergy Immunol 32:346–354

    Google Scholar 

  53. Cates EC, Gajewska BU, Goncharova S et al (2003) Effect of GM-CSF on immune, inflammatory, and clinical responses to ragweed in a novel mouse model of mucosal sensitization. J Allergy Clin Immunol 111:1076–1086

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by grants of the Junta de Castilla y León ref. GRS1047/A/14 and GRS1189/A/15.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fernando Marqués-García .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Marqués-García, F., Marcos-Vadillo, E. (2016). Review of Mouse Models Applied to the Study of Asthma. In: Isidoro García, M. (eds) Molecular Genetics of Asthma. Methods in Molecular Biology, vol 1434. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3652-6_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3652-6_15

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3650-2

  • Online ISBN: 978-1-4939-3652-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics