Probing Chromosome Dynamics in Bacillus subtilis

  • Alan Koh
  • Heath MurrayEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1431)


Research over the last two decades has revealed that bacterial genomes are, in fact, highly organized. The goal of future research is to understand the molecular mechanisms underlying bacterial chromosome architecture and dynamics during the cell cycle. Here we discuss techniques that can be used with live cells to analyze chromosome structure and segregation in the gram-positive model organism Bacillus subtilis.

Key words

Microscopy Fluorescent protein Chromosome DNA replication DNA segregation Prokaryote 



This work was supported by a grant from the BBSRC (BB/K017527/1) and a Royal Society University Research Fellowship to H.M.


  1. 1.
    Wang XD, Llopis PM, Rudner DZ (2014) Bacillus subtilis chromosome organization oscillates between two distinct patterns. Proc Natl Acad Sci U S A 111:12877–12882CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Viollier PH, Thanbichler M, Mcgrath PT et al (2004) Rapid and sequential movement of individual chromosomal loci to specific subcellular locations during bacterial DNA replication. Proc Natl Acad Sci U S A 101:9257–9262CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Mercier R, Petit MA, Schbath S et al (2008) The MatP/matS site-specific system organizes the terminus region of the E. coli chromosome into a macrodomain. Cell 135:475–485CrossRefPubMedGoogle Scholar
  4. 4.
    Valens M, Penaud S, Rossignol M et al (2004) Macrodomain organization of the Escherichia coli chromosome. EMBO J 23:4330–4341CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Ireton K, Gunther NW, Grossman AD (1994) Spo0j is required for normal chromosome segregation as well as the initiation of sporulation in Bacillus subtilis. J Bacteriol 176:5320–5329PubMedPubMedCentralGoogle Scholar
  6. 6.
    Lee PS, Grossman AD (2006) The chromosome partitioning proteins Soj (ParA) and Spo0J (ParB) contribute to accurate chromosome partitioning, separation of replicated sister origins, and regulation of replication initiation in Bacillus subtilis. Mol Microbiol 60:853–869CrossRefPubMedGoogle Scholar
  7. 7.
    Gruber S, Veening JW, Bach J et al (2014) Interlinked sister chromosomes arise in the absence of condensin during fast replication in B. subtilis. Curr Biol 24:293–298CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Britton RA, Lin DC, Grossman AD (1998) Characterization of a prokaryotic SMC protein involved in chromosome partitioning. Gene Dev 12:1254–1259CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Kohler P, Marahiel MA (1997) Association of the histone-like protein HBsu with the nucleoid of Bacillus subtilis. J Bacteriol 179:2060–2064PubMedPubMedCentralGoogle Scholar
  10. 10.
    Lee PS, Lin DCH, Moriya S et al (2003) Effects of the chromosome partitioning protein Spo0J (ParB) on oriC of positioning and replication initiation Bacillus subtilis. J Bacteriol 185:1326–1337CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Teleman AA, Graumann PL, Lin DCH et al (1998) Chromosome arrangement within a bacterium. Curr Biol 8:1102–1109CrossRefPubMedGoogle Scholar
  12. 12.
    Lin DC, Levin PA, Grossman AD (1997) Bipolar localization of a chromosome partition protein in Bacillus subtilis. Proc Natl Acad Sci U S A 94:4721–4726CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Dworkin J, Losick R (2002) Does RNA polymerase help drive chromosome segregation in bacteria? Proc Natl Acad Sci U S A 99:14089–14094CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Gordon GS, Sitnikov D, Webb CD et al (1997) Chromosome and low copy plasmid segregation in E. coli: visual evidence for distinct mechanisms. Cell 90:1113–1121CrossRefPubMedGoogle Scholar
  15. 15.
    Lau IF, Filipe SR, Soballe B et al (2003) Spatial and temporal organization of replicating Escherichia coli chromosomes. Mol Microbiol 49:731–743CrossRefPubMedGoogle Scholar
  16. 16.
    Gruber S, Errington J (2009) Recruitment of condensin to replication origin regions by ParB/Spo0J promotes chromosome segregation in B. subtilis. Cell 137:685–696CrossRefPubMedGoogle Scholar
  17. 17.
    Possoz C, Filipe SR, Grainge I et al (2006) Tracking of controlled Escherichia coli replication fork stalling and restart at repressor-bound DNA in vivo. EMBO J 25:2596–2604CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Mendelson NH, Gross JD (1967) Characterization of a temperature-sensitive mutant of Bacillus subtilis defective in deoxyribonucleic acid replication. J Bacteriol 94:1603–1608PubMedPubMedCentralGoogle Scholar
  19. 19.
    Su'etsugu M, Errington J (2011) The replicase sliding clamp dynamically accumulates behind progressing replication forks in Bacillus subtilis cells. Mol Cell 41:720–732CrossRefPubMedGoogle Scholar
  20. 20.
    Ben-Yehuda S, Fujita M, Liu XS et al (2005) Defining a centromere-like element in Bacillus subtilis by identifying the binding sites for the chromosome-anchoring protein RacA. Mol Cell 17:773–782CrossRefPubMedGoogle Scholar
  21. 21.
    Ben-Yehuda S, Rudner DZ, Losick R (2003) RacA, a bacterial protein that anchors chromosomes to the cell poles. Science 299:532–536CrossRefPubMedGoogle Scholar
  22. 22.
    Wu LJ, Errington J (2003) RacA and the Soj-Spo0J system combine to effect polar chromosome segregation in sporulating Bacillus subtilis. Mol Microbiol 49:1463–1475CrossRefPubMedGoogle Scholar
  23. 23.
    Wu LJ, Errington J (1994) Bacillus subtilis SpolllE protein required for DNA segregation during asymmetric cell-division. Science 264:572–575CrossRefPubMedGoogle Scholar
  24. 24.
    Bath J, Wu LJ, Errington J et al (2000) Role of Bacillus subtilis SpoIIIE in DNA transport across the mother cell-prespore division septum. Science 290:995–997CrossRefPubMedGoogle Scholar
  25. 25.
    Wu LJ, Errington J (1997) Septal localization of the SpoIIIE chromosome partitioning protein in Bacillus subtilis. EMBO J 16:2161–2169CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Sterlini JM, Mandelstam J (1969) Commitment to sporulation in Bacillus subtilis and its relationship to development of actinomycin resistance. Biochem J 113:29–37CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Partridge SR, Errington J (1993) The importance of morphological events and intercellular interactions in the regulation of prespore-specific gene expression during sporulation in Bacillus subtilis. Mol Microbiol 8:945–955CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Centre for Bacterial Cell Biology, Institute for Cell & Molecular BiosciencesNewcastle UniversityNewcastle Upon TyneUK

Personalised recommendations