Advertisement

Investigating Bacterial Chromosome Architecture

  • Christian LesterlinEmail author
  • Nelly DuabrryEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1431)

Abstract

How is the bacterial chromosome organized within the bacterial cell? Over the last 60 years, a variety of approaches have been used to investigate this question. More recently, the parallel development of epifluorescence microscopy and genetic tools has enabled the direct visualization of the intracellular positioning of DNA sequences in live cells and has consequently revolutionized our view of the architecture of the nucleoid in vivo. In this chapter I present a comprehensive methodology designed to characterize the architecture of the nucleoid DNA and the positioning of specific DNA sequences in live Escherichia coli cells. DNA localization systems, preparation of stable agarose-mounted microscopy slides, and basic image analysis tools are mentioned.

Key words

Bacterial chromosome DNA architecture and dynamics Live cell imaging Epifluorescence microscopy 

Notes

Acknowledgments

Thanks to Nelly Dubarry for critical reading. This work was supported by ATIP-Avenir 2014 grant (CNRS and INSERM) and Finovi Funding to Christian Lesterlin.

References

  1. 1.
    Mason DJ, Powelson DM (1956) Nuclear division as observed in live bacteria by a new technique. J Bacteriol 71(4):474–479PubMedPubMedCentralGoogle Scholar
  2. 2.
    Delius H, Worcel A (1974) Electron microscopic studies on the folded chromosome of Escherichia coli. Cold Spring Harb Symp Quant Biol 38:53–58CrossRefPubMedGoogle Scholar
  3. 3.
    Delius H, Worcel A (1974) Letter: electron microscopic visualization of the folded chromosome of Escherichia coli. J Mol Biol 82(1):107–109CrossRefPubMedGoogle Scholar
  4. 4.
    Hobot JA, Villiger W, Escaig J, Maeder M, Ryter A, Kellenberger E (1985) Shape and fine structure of nucleoids observed on sections of ultrarapidly frozen and cryosubstituted bacteria. J Bacteriol 162(3):960–971PubMedPubMedCentralGoogle Scholar
  5. 5.
    Bohrmann B, Villiger W, Johansen R, Kellenberger E (1991) Coralline shape of the bacterial nucleoid after cryofixation. J Bacteriol 173(10):3149–3158PubMedPubMedCentralGoogle Scholar
  6. 6.
    Bohrmann B, Haider M, Kellenberger E (1993) Concentration evaluation of chromatin in unstained resin-embedded sections by means of low-dose ratio-contrast imaging in STEM. Ultramicroscopy 49(1-4):235–251CrossRefPubMedGoogle Scholar
  7. 7.
    Bliska JB, Cozzarelli NR (1987) Use of site-specific recombination as a probe of DNA structure and metabolism in vivo. J Mol Biol 194(2):205–218CrossRefPubMedGoogle Scholar
  8. 8.
    Higgins NP, Yang X, Fu Q, Roth JR (1996) Surveying a supercoil domain by using the gamma delta resolution system in Salmonella typhimurium. J Bacteriol 178(10):2825–2835PubMedPubMedCentralGoogle Scholar
  9. 9.
    Staczek P, Higgins NP (1998) Gyrase and Topo IV modulate chromosome domain size in vivo. Mol Microbiol 29(6):1435–1448CrossRefPubMedGoogle Scholar
  10. 10.
    Postow L, Hardy CD, Arsuaga J, Cozzarelli NR (2004) Topological domain structure of the Escherichia coli chromosome. Genes Dev 18(14):1766–1779CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Valens M, Penaud S, Rossignol M, Cornet F, Boccard F (2004) Macrodomain organization of the Escherichia coli chromosome. EMBO J 23(21):4330–4341CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Stein RA, Deng S, Higgins NP (2005) Measuring chromosome dynamics on different time scales using resolvases with varying half-lives. Mol Microbiol 56(4):1049–1061CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Lesterlin C, Gigant E, Boccard F, Espeli O (2012) Sister chromatid interactions in bacteria revealed by a site-specific recombination assay. EMBO J 31(16):3468–3479. doi: 10.1038/emboj.2012.194, emboj2012194 [pii]CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Webb CD, Teleman A, Gordon S, Straight A, Belmont A, Lin DC, Grossman AD, Wright A, Losick R (1997) Bipolar localization of the replication origin regions of chromosomes in vegetative and sporulating cells of B. subtilis. Cell 88(5):667–674CrossRefPubMedGoogle Scholar
  15. 15.
    Gordon GS, Wright A (1998) DNA segregation: putting chromosomes in their place. Curr Biol 8(25):R925–R927CrossRefPubMedGoogle Scholar
  16. 16.
    Li Y, Sergueev K, Austin S (2002) The segregation of the Escherichia coli origin and terminus of replication. Mol Microbiol 46(4):985–995CrossRefPubMedGoogle Scholar
  17. 17.
    Lau IF, Filipe SR, Soballe B, Okstad OA, Barre FX, Sherratt DJ (2003) Spatial and temporal organization of replicating Escherichia coli chromosomes. Mol Microbiol 49(3):731–743CrossRefPubMedGoogle Scholar
  18. 18.
    Wang X, Possoz C, Sherratt DJ (2005) Dancing around the divisome: asymmetric chromosome segregation in Escherichia coli. Genes Dev 19(19):2367–2377. doi: 10.1101/gad.345305 CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Nielsen HJ, Ottesen JR, Youngren B, Austin SJ, Hansen FG (2006) The Escherichia coli chromosome is organized with the left and right chromosome arms in separate cell halves. Mol Microbiol 62(2):331–338. doi: 10.1111/j.1365-2958.2006.05346.x CrossRefPubMedGoogle Scholar
  20. 20.
    Lesterlin C, Pages C, Dubarry N, Dasgupta S, Cornet F (2008) Asymmetry of chromosome Replichores renders the DNA translocase activity of FtsK essential for cell division and cell shape maintenance in Escherichia coli. PLoS Genet 4(12), e1000288. doi: 10.1371/journal.pgen.1000288 CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    White MA, Eykelenboom JK, Lopez-Vernaza MA, Wilson E, Leach DR (2008) Non-random segregation of sister chromosomes in Escherichia coli. Nature 455(7217):1248–1250. doi: 10.1038/nature07282 CrossRefPubMedGoogle Scholar
  22. 22.
    Hadizadeh Yazdi N, Guet CC, Johnson RC, Marko JF (2012) Variation of the folding and dynamics of the Escherichia coli chromosome with growth conditions. Mol Microbiol 86(6):1318–1333. doi: 10.1111/mmi.12071 CrossRefPubMedGoogle Scholar
  23. 23.
    Fisher JK, Bourniquel A, Witz G, Weiner B, Prentiss M, Kleckner N (2013) Four-dimensional imaging of E. coli nucleoid organization and dynamics in living cells. Cell 153(4):882–895. doi: 10.1016/j.cell.2013.04.006 CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Dame RT (2005) The role of nucleoid-associated proteins in the organization and compaction of bacterial chromatin. Mol Microbiol 56(4):858–870CrossRefPubMedGoogle Scholar
  25. 25.
    Possoz C, Filipe SR, Grainge I, Sherratt DJ (2006) Tracking of controlled Escherichia coli replication fork stalling and restart at repressor-bound DNA in vivo. EMBO J 25(11):2596–2604. doi: 10.1038/sj.emboj.7601155 CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Dubarry N, Pasta F, Lane D (2006) ParABS systems of the four replicons of Burkholderia cenocepacia: new chromosome centromeres confer partition specificity. J Bacteriol 188(4):1489–1496. doi: 10.1128/JB.188.4.1489-1496.2006 CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Gordon GS, Sitnikov D, Webb CD, Teleman A, Straight A, Losick R, Murray AW, Wright A (1997) Chromosome and low copy plasmid segregation in E. coli: visual evidence for distinct mechanisms. Cell 90(6):1113–1121CrossRefPubMedGoogle Scholar
  28. 28.
    Sliusarenko O, Heinritz J, Emonet T, Jacobs-Wagner C (2011) High-throughput, subpixel precision analysis of bacterial morphogenesis and intracellular spatio-temporal dynamics. Mol Microbiol 80(3):612–627. doi: 10.1111/j.1365-2958.2011.07579.x CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Fleurie A, Lesterlin C, Manuse S, Zhao C, Cluzel C, Lavergne JP, Franz-Wachtel M, Macek B, Combet C, Kuru E, VanNieuwenhze MS, Brun YV, Sherratt D, Grangeasse C (2014) MapZ marks the division sites and positions FtsZ rings in Streptococcus pneumoniae. Nature 516(7530):259–262. doi: 10.1038/nature13966 CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Lesterlin C, Ball G, Schermelleh L, Sherratt DJ (2014) RecA bundles mediate homology pairing between distant sisters during DNA break repair. Nature 506(7487):249–253. doi: 10.1038/nature12868 CrossRefPubMedGoogle Scholar
  31. 31.
    de Chaumont F, Dallongeville S, Chenouard N, Herve N, Pop S, Provoost T, Meas-Yedid V, Pankajakshan P, Lecomte T, Le Montagner Y, Lagache T, Dufour A, Olivo-Marin JC (2012) Icy: an open bioimage informatics platform for extended reproducible research. Nat Methods 9(7):690–696. doi: 10.1038/nmeth.2075 CrossRefPubMedGoogle Scholar
  32. 32.
    Stracy M, Uphoff S, Garza de Leon F, Kapanidis AN (2014) In vivo single-molecule imaging of bacterial DNA replication, transcription, and repair. FEBS Lett 588(19):3585–3594. doi: 10.1016/j.febslet.2014.05.026 CrossRefPubMedGoogle Scholar
  33. 33.
    Uphoff S, Sherratt DJ, Kapanidis AN (2014) Visualizing protein-DNA interactions in live bacterial cells using photoactivated single-molecule tracking. J Vis Exp 85:PMID:24638084. doi: 10.3791/51177 Google Scholar
  34. 34.
    Wang X, Lesterlin C, Reyes-Lamothe R, Ball G, Sherratt DJ (2011) Replication and segregation of an Escherichia coli chromosome with two replication origins. Proc Natl Acad Sci U S A 108(26):E243–E250. doi: 10.1073/pnas.1100874108 CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Badrinarayanan A, Lesterlin C, Reyes-Lamothe R, Sherratt D (2012) The Escherichia coli SMC complex, MukBEF, shapes nucleoid organization independently of DNA replication. J Bacteriol 194(17):4669–4676. doi: 10.1128/JB.00957-12 CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Uphoff S, Reyes-Lamothe R, Garza de Leon F, Sherratt DJ, Kapanidis AN (2013) Single-molecule DNA repair in live bacteria. Proc Natl Acad Sci U S A 110(20):8063–8068. doi: 10.1073/pnas.1301804110 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.MMSB - Molecular Microbiology and Structural BiochemistryUniversité Lyon 1, CNRS, UMR 5086Lyon Cedex 07France

Personalised recommendations