Imaging DNA Structure by Atomic Force Microscopy

  • Alice L. B. PyneEmail author
  • Bart W. HoogenboomEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1431)


Atomic force microscopy (AFM) is a microscopy technique that uses a sharp probe to trace a sample surface at nanometre resolution. For biological applications, one of its key advantages is its ability to visualize substructure of single molecules and molecular complexes in an aqueous environment. Here, we describe the application of AFM to determine superstructure and secondary structure of surface-bound DNA. The method is also readily applicable to probe DNA–DNA interactions and DNA–protein complexes.

Key words

Atomic force microscopy AFM DNA Supercoiling Double helix DNA–protein binding 


  1. 1.
    Hoogenboom BW (2015) AFM in liquids. In: Bhushan B (ed) Encyclopedia of nanotechnology, 2nd edn. Springer, Amsterdam, pp 83–89. doi: 10.1007/978-90-481-9751-4 Google Scholar
  2. 2.
    Leung C, Bestembayeva A, Thorogate R, Stinson J, Pyne A, Marcovich C, Yang JL, Drechsler U, Despont M, Jankowski T (2012) Atomic force microscopy with nanoscale cantilevers resolves different structural conformations of the DNA double helix. Nano Lett 12(7):3846–3850. doi: 10.1021/nl301857p CrossRefPubMedGoogle Scholar
  3. 3.
    Ido S, Kimura K, Oyabu N, Kobayashi K, Tsukada M, Matsushige K, Yamada H (2013) Beyond the helix pitch: direct visualization of native DNA in aqueous solution. ACS Nano 7(2):1817–1822. doi: 10.1021/nn400071n CrossRefPubMedGoogle Scholar
  4. 4.
    Pyne A, Thompson R, Leung C, Roy D, Hoogenboom BW (2014) Single-molecule reconstruction of oligonucleotide secondary structure by atomic force microscopy. Small 10(16):3257–3261. doi: 10.1002/smll.201400265 CrossRefPubMedGoogle Scholar
  5. 5.
    Crampton N, Yokokawa M, Dryden DTF, Edwardson JM, Rao DN, Takeyasu K, Yoshimura SH, Henderson RM (2007) Fast-scan atomic force microscopy reveals that the type III restriction enzyme EcoP15I Is capable of DNA translocation and looping. Proc Natl Acad Sci U S A 104(31):12755–12760. doi: 10.1073/pnas.0700483104 CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Lyubchenko YL (2014) Nanoscale nucleosome dynamics assessed with time-lapse AFM. Biophys Rev 6(2):181–190. doi: 10.1007/s12551-013-0121-3 CrossRefPubMedGoogle Scholar
  7. 7.
    Miyagi A, Ando T, Lyubchenko YL (2011) Dynamics of nucleosomes assessed with time-lapse high-speed atomic force microscopy. Biochemistry 50(37):7901–7908. doi: 10.1021/bi200946z CrossRefPubMedGoogle Scholar
  8. 8.
    Adamcik J, Jeon J-H, Karczewski KJ, Metzler R, Dietler G (2012) Quantifying supercoiling-induced denaturation bubbles in DNA. Soft Matter 8(33):8651–8658. doi: 10.1039/C2SM26089A CrossRefGoogle Scholar
  9. 9.
    Fogg JM, Kolmakova N, Rees I, Magonov S, Hansma H, Perona JJ, Zechiedrich EL (2006) Exploring writhe in supercoiled minicircle DNA. J Phys Condens Matter 18(14):S145–S159. doi: 10.1088/0953-8984/18/14/S01 CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Bussiek M (2003) Polylysine-coated mica can be used to observe systematic changes in the supercoiled DNA conformation by scanning force microscopy in solution. Nucleic Acids Res 31(22):137. doi: 10.1093/nar/gng137 CrossRefGoogle Scholar
  11. 11.
    Li D, Lv B, Zhang H, Lee JY, Li T (2014) Positive supercoiling affiliated with nucleosome formation repairs non-B DNA structures. Chem Commun 50(73):10641–10644. doi: 10.1039/C4CC04789C CrossRefGoogle Scholar
  12. 12.
    Osada E, Suzuki Y, Hidaka K, Ohno H, Sugiyama H, Endo M, Saito H (2014) Engineering RNA–protein complexes with different shapes for imaging and therapeutic applications. ACS Nano 8(8):8130–8140. doi: 10.1021/nn502253c CrossRefPubMedGoogle Scholar
  13. 13.
    Kundukad B, Cong P, van der Maarel JRC, Doyle PS (2013) Time-dependent bending rigidity and helical twist of DNA by rearrangement of bound HU protein. Nucleic Acids Res 41(17):8280–8288. doi: 10.1093/nar/gkt593 CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Gaczynska M, Osmulski PA, Jiang Y, Lee J-K, Bermudez V, Hurwitz J (2004) Atomic force microscopic analysis of the binding of the Schizosaccharomyces pombe origin recognition complex and the spOrc4 protein with origin DNA. Proc Natl Acad Sci U S A 101(52):17952–17957. doi: 10.2307/3374175 CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Heddle JG, Mitelheiser S, Maxwell A, Thomson NH (2004) Nucleotide binding to DNA gyrase causes loss of DNA wrap. J Mol Biol 337(3):597–610. doi: 10.1016/j.jmb.2004.01.049 CrossRefPubMedGoogle Scholar
  16. 16.
    Katan AJ, Vlijm R, Lusser A, Dekker C (2015) Dynamics of nucleosomal structures measured by high-speed atomic force microscopy. Small 11(8):976–984. doi: 10.1002/smll.201401318 CrossRefPubMedGoogle Scholar
  17. 17.
    Hansma HG (2001) Surface biology of DNA by atomic force microscopy. Annu Rev Phys Chem 52(1):71–92. doi: 10.1146/annurev.physchem.52.1.71 CrossRefPubMedGoogle Scholar
  18. 18.
    Mou J, Czajkowsky DM, Zhang Y, Shao Z (1995) High-resolution atomic-force microscopy of DNA: the pitch of the double helix. FEBS Lett 371(3):279–282. doi: 10.1016/0014-5793(95)00906-P CrossRefPubMedGoogle Scholar
  19. 19.
    Maaloum M, Beker A-F, Muller P (2011) Secondary structure of double-stranded DNA under stretching: elucidation of the stretched form. Phys Rev E 83(3):031903. doi: 10.1103/PhysRevE.83.031903 CrossRefGoogle Scholar
  20. 20.
    Santos S, Barcons V, Christenson HK, Billingsley DJ, Bonass WA, Font J, Thomson NH (2013) Stability, resolution, and ultra-low wear amplitude modulation atomic force microscopy of DNA: small amplitude small set-point imaging. Appl Phys Lett 103(6):063702. doi: 10.1063/1.4817906 CrossRefGoogle Scholar
  21. 21.
    Lyubchenko YL, Shlyakhtenko LS (2009) AFM for analysis of structure and dynamics of DNA and protein–DNA complexes. Methods 47(3):206–213. doi: 10.1016/j.ymeth.2008.09.002 CrossRefPubMedGoogle Scholar
  22. 22.
    Hansma HG, Laney DE (1996) DNA binding to mica correlates with cationic radius: assay by atomic force microscopy. Biophys J 70(4):1933–1939. doi: 10.1016/S0006-3495(96)79757-6 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.London Centre for Nanotechnology and Department of Physics and AstronomyUniversity College LondonLondonUK

Personalised recommendations