Single-Molecule Narrow-Field Microscopy of Protein–DNA Binding Dynamics in Glucose Signal Transduction of Live Yeast Cells

  • Adam J. M. WollmanEmail author
  • Mark C. Leake
Part of the Methods in Molecular Biology book series (MIMB, volume 1431)


Single-molecule narrow-field microscopy is a versatile tool to investigate a diverse range of protein dynamics in live cells and has been extensively used in bacteria. Here, we describe how these methods can be extended to larger eukaryotic, yeast cells, which contain subcellular compartments. We describe how to obtain single-molecule microscopy data but also how to analyze these data to track and obtain the stoichiometry of molecular complexes diffusing in the cell. We chose glucose mediated signal transduction of live yeast cells as the system to demonstrate these single-molecule techniques as transcriptional regulation is fundamentally a single-molecule problem—a single repressor protein binding a single binding site in the genome can dramatically alter behavior at the whole cell and population level.

Key words

Single-molecule biophysics Signal transduction Yeast 



We thank Sviatlana Shashkova and Stefan Hohmann (University of Gothenburg, Sweden) for donation of yeast cell strains and assistance with yeast cell culturing. M.C.L. was assisted by a Royal Society URF and research funds from the Biological Physical Sciences Institute (BPSI) of the University of York, UK.


  1. 1.
    Wollman AJM, Miller H, Zhou Z et al (2015) Probing DNA interactions with proteins using a single-molecule toolbox: inside the cell, in a test tube and in a computer. Biochem Soc Trans 43:139–145CrossRefPubMedGoogle Scholar
  2. 2.
    Lenn T, Leake MC, Mullineaux CW (2008) Are Escherichia coli OXPHOS complexes concentrated in specialized zones within the plasma membrane? Biochem Soc Trans 36:1032–1036CrossRefPubMedGoogle Scholar
  3. 3.
    Plank M, Wadhams GH, Leake MC (2009) Millisecond timescale slimfield imaging and automated quantification of single fluorescent protein molecules for use in probing complex biological processes. Integr Biol 1:602–612CrossRefGoogle Scholar
  4. 4.
    Chiu S-W, Leake MC (2011) Functioning nanomachines seen in real-time in living bacteria using single-molecule and super-resolution fluorescence imaging. Int J Mol Sci 12:2518–2542CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Robson A, Burrage K, Leake MC (2013) Inferring diffusion in single live cells at the single-molecule level. Philos Trans R Soc Lond B Biol Sci 368:20120029CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Bryan SJ, Burroughs NJ, Shevela D et al (2014) Localisation and interactions of the Vipp1 protein in cyanobacteria. Mol Microbiol 94(5):1179–1195CrossRefPubMedCentralGoogle Scholar
  7. 7.
    Llorente-Garcia I, Lenn T, Erhardt H et al (2014) Single-molecule in vivo imaging of bacterial respiratory complexes indicates delocalized oxidative phosphorylation. Biochim Biophys Acta 1837:811–824CrossRefPubMedGoogle Scholar
  8. 8.
    Reyes-Lamothe R, Sherratt DJ, Leake MC (2010) Stoichiometry and architecture of active DNA replication machinery in Escherichia coli. Science 328:498–501CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Badrinarayanan A, Reyes-Lamothe R, Uphoff S et al (2012) In vivo architecture and action of bacterial structural maintenance of chromosome proteins. Science 338:528–531CrossRefPubMedGoogle Scholar
  10. 10.
    Wollman AJM, Nudd R, Hedlund EG et al (2015) From animaculum to single molecules: 300 years of the light microscope. Open Biol 5:150019–150019CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Lundin M, Nehlin JO, Ronne H (1994) Importance of a flanking AT-rich region in target site recognition by the GC box-binding zinc finger protein MIG1. Mol Cell Biol 14:1979–1985CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Nehlin JO, Carlberg M, Ronne H (1991) Control of yeast GAL genes by MIG1 repressor: a transcriptional cascade in the glucose response. EMBO J 10:3373–3377PubMedPubMedCentralGoogle Scholar
  13. 13.
    Klein CJL, Olsson L, Nielsen J (1998) Glucose control in Saccharomyces cerevisiae: the role of MIG1 in metabolic functions. Microbiology 144:13–24CrossRefPubMedGoogle Scholar
  14. 14.
    Ghillebert R, Swinnen E, Wen J et al (2011) The AMPK/SNF1/SnRK1 fuel gauge and energy regulator: structure, function and regulation. FEBS J 278:3978–3990CrossRefPubMedGoogle Scholar
  15. 15.
    Broach JR (2012) Nutritional control of growth and development in yeast. Genetics 192:73–105CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    De Vit MJ, Waddle J, Johnston M (1997) Regulated nuclear translocation of the Mig1 glucose repressor. Mol Biol Cell 8:1603–1618CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Bendrioua L, Smedh M, Almquist J et al (2014) Yeast AMP-activated protein kinase monitors glucose concentration changes and absolute glucose levels. J Biol Chem 289:12863–12875CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Treitel MA, Carlson M (1995) Repression by SSN6-TUP1 is directed by MIG1, a repressor/activator protein. Proc Natl Acad Sci U S A 92:3132–3136CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Smith FC, Davies SP, Wilson WA et al (1999) The SNF1 kinase complex from Saccharomyces cerevisiae phosphorylates the transcriptional repressor protein Mig1p in vitro at four sites within or near regulatory domain 1. FEBS Lett 453:219–223CrossRefPubMedGoogle Scholar
  20. 20.
    Ostling J, Carlberg M, Ronne H (1996) Functional domains in the Mig1 repressor. Mol Cell Biol 16:753–761CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Ostling J, Ronne H (1998) Negative control of the Mig1p repressor by Snf1p-dependent phosphorylation in the absence of glucose. Eur J Biochem 252:162–168CrossRefPubMedGoogle Scholar
  22. 22.
    Frolova E (1999) Binding of the glucose-dependent Mig1p repressor to the GAL1 and GAL4 promoters in vivo: regulation by glucose and chromatin structure. Nucleic Acids Res 27:1350–1358CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    DeVit MJ, Johnston M (1999) The nuclear exportin Msn5 is required for nuclear export of the Mig1 glucose repressor of Saccharomyces cerevisiae. Curr Biol 9:1231–1241CrossRefPubMedGoogle Scholar
  24. 24.
    Wollman A, Leake MC (2015) Single molecule microscopy: millisecond single-molecule localization microscopy combined with convolution analysis and automated image segmentation to determine protein concentrations in complexly structured, functional cells, one cell at a time. Farad Discuss 184:401–424Google Scholar
  25. 25.
    Miller H, Zhaokun Z, Wollman AJM et al (2015) Superresolution imaging of single DNA molecules using stochastic photoblinking of minor groove and intercalating dyes. Methods 88:81–88CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Biological Physical Sciences Institute (BPSI)University of YorkHeslington, YorkUK

Personalised recommendations