Advertisement

Visualizing Bacillus subtilis During Vegetative Growth and Spore Formation

  • Xindan WangEmail author
  • Paula Montero Llopis
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1431)

Abstract

Bacillus subtilis is the most commonly used Gram-positive bacterium to study cellular processes because of its genetic tractability. In addition, during nutrient limitation, B. subtilis undergoes the development process of spore formation, which is among the simplest examples of cellular differentiation. Many aspects of these processes have benefited from fluorescence microscopy. Here, we describe basic wide-field fluorescence microscopy techniques to visualize B. subtilis during vegetative growth, and the developmental process of sporulation.

Key words

Bacillus subtilis Vegetative growth Sporulation Fluorescence microscopy Time-lapse microscopy 

Notes

Acknowledgment

Support for this work comes from National Institutes of Health Grants GM086466 and GM073831 (to David Z. Rudner). X.W. was a long-term fellow of the Human Frontier Science Program. P.M.L. is a Helen Hay Whitney postdoctoral fellow.

References

  1. 1.
    Tan IS, Ramamurthi KS (2014) Spore formation in Bacillus subtilis. Environ Microbiol Rep 6(3):212–225. doi: 10.1111/1758-2229.12130 CrossRefPubMedGoogle Scholar
  2. 2.
    Setlow P (2014) Spore resistance properties. Microbiol Spectr 2(5):PMID: 26104355. doi: 10.1128/microbiolspec.TBS-0003-2012 Google Scholar
  3. 3.
    Paredes-Sabja D, Setlow P, Sarker MR (2011) Germination of spores of Bacillales and Clostridiales species: mechanisms and proteins involved. Trends Microbiol 19(2):85–94. doi: 10.1016/j.tim.2010.10.004 CrossRefPubMedGoogle Scholar
  4. 4.
    Rudner DZ, Losick R (2010) Protein subcellular localization in bacteria. Cold Spring Harb Perspect Biol 2(4):a000307. doi: 10.1101/cshperspect.a000307 CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Fornasiero EF, Opazo F (2015) Super-resolution imaging for cell biologists: concepts, applications, current challenges and developments. Bioessays 37(4):436–451. doi: 10.1002/bies.201400170 CrossRefPubMedGoogle Scholar
  6. 6.
    Norman TM, Lord ND, Paulsson J, Losick R (2013) Memory and modularity in cell-fate decision making. Nature 503(7477):481–486. doi: 10.1038/nature12804 CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Wang P, Robert L, Pelletier J, Dang WL, Taddei F, Wright A, Jun S (2010) Robust growth of Escherichia coli. Curr Biol 20(12):1099–1103. doi: 10.1016/j.cub.2010.04.045 CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Balaban NQ, Merrin J, Chait R, Kowalik L, Leibler S (2004) Bacterial persistence as a phenotypic switch. Science 305(5690):1622–1625. doi: 10.1126/science.1099390 CrossRefPubMedGoogle Scholar
  9. 9.
    Harwood CR, Cutting SM (1990) Molecular biological methods for Bacillus. Wiley, New York, NYGoogle Scholar
  10. 10.
    Grossman AD, Losick R (1988) Extracellular control of spore formation in Bacillus subtilis. Proc Natl Acad Sci U S A 85(12):4369–4373CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Wang X, Montero Llopis P, Rudner DZ (2014) Bacillus subtilis chromosome organization oscillates between two distinct patterns. Proc Natl Acad Sci U S A 111:12877–12882. doi: 10.1073/pnas.1407461111 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Department of Microbiology & ImmunobiologyHarvard Medical SchoolBostonUSA

Personalised recommendations