Advertisement

Biophysical Characterization of Chromatin Remodeling Protein CHD4

  • Rosa Morra
  • Tomas Fessl
  • Yuchong Wang
  • Erika J. Mancini
  • Roman TumaEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1431)

Abstract

Chromatin-remodeling ATPases modulate histones–DNA interactions within nucleosomes and regulate transcription. At the heart of remodeling, ATPase is a helicase-like motor flanked by a variety of conserved targeting domains. CHD4 is the core subunit of the nucleosome remodeling and deacetylase complex NuRD and harbors tandem plant homeo finger (tPHD) and chromo (tCHD) domains. We describe a multifaceted approach to link the domain structure with function, using quantitative assays for DNA and histone binding, ATPase activity, shape reconstruction from solution scattering data, and single molecule translocation assays. These approaches are complementary to high-resolution structure determination.

Key words

Nucleosome ATPase Surface plasmon resonance SAXS TIRF FRET 

Notes

Acknowledgements

Support of the U.K. MRC, Royal Society (E.M.J.) and Welcome Trust core facility (R.T.) is gratefully acknowledged.

References

  1. 1.
    Eisen JA, Sweder KS, Hanawalt PC (1995) Evolution of the SNF2 family of proteins: subfamilies with distinct sequences and functions. Nucleic Acids Res 23:2715–2723CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Zhang Y, Ng HH, Erdjument-Bromage H, Tempst P, Bird A, Reinberg D (1999) Analysis of the NuRD subunits reveals a histone deacetylase core complex and a connection with DNA methylation. Genes Dev 13:1924–1935CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Tong JK, Hassig CA, Schnitzler GR, Kingston RE, Schreiber SL (1998) Chromatin deacetylation by an ATP-dependent nucleosome remodelling complex. Nature 395:917–921CrossRefPubMedGoogle Scholar
  4. 4.
    Xue Y, Wong J, Moreno GT, Young MK, Cote J, Wang W (1998) NURD, a novel complex with both ATP-dependent chromatin-remodeling and histone deacetylase activities. Mol Cell 2:851–861CrossRefPubMedGoogle Scholar
  5. 5.
    Feng Q, Zhang Y (2003) The NuRD complex: linking histone modification to nucleosome remodeling. Curr Top Microbiol Immunol 274:269–290PubMedGoogle Scholar
  6. 6.
    Bowen NJ, Fujita N, Kajita M, Wade PA (2004) Mi-2/NuRD: multiple complexes for many purposes. Biochim Biophys Acta 1677:52–57CrossRefPubMedGoogle Scholar
  7. 7.
    Denslow SA, Wade PA (2007) The human Mi-2/NuRD complex and gene regulation. Oncogene 26:5433–5438CrossRefPubMedGoogle Scholar
  8. 8.
    Gao H, Lukin K, Ramirez J, Fields S, Lopez D, Hagman J (2009) Opposing effects of SWI/SNF and Mi-2/NuRD chromatin remodeling complexes on epigenetic reprogramming by EBF and Pax5. Proc Natl Acad Sci U S A 106:11258–11263CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Bienz M (2006) The PHD finger, a nuclear protein-interaction domain. Trends Biochem Sci 31:35–40CrossRefPubMedGoogle Scholar
  10. 10.
    Shi X, Kachirskaia I, Walter KL, Kuo JH, Lake A, Davrazou F, Chan SM, Martin DG, Fingerman IM, Briggs SD, Howe L, Utz PJ, Kutateladze TG, Lugovskoy AA, Bedford MT, Gozani O (2007) Proteome-wide analysis in Saccharomyces cerevisiae identifies several PHD fingers as novel direct and selective binding modules of histone H3 methylated at either lysine 4 or lysine 36. J Biol Chem 282:2450–2455CrossRefPubMedGoogle Scholar
  11. 11.
    Pena PV, Davrazou F, Shi X, Walter KL, Verkhusha VV, Gozani O, Zhao R, Kutateladze TG (2006) Molecular mechanism of histone H3K4me3 recognition by plant homeodomain of ING2. Nature 442:100–103PubMedPubMedCentralGoogle Scholar
  12. 12.
    Bouazoune K, Mitterweger A, Langst G, Imhof A, Akhtar A, Becker PB, Brehm A (2002) The dMi-2 chromodomains are DNA binding modules important for ATP-dependent nucleosome mobilization. EMBO J 21:2430–2440CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Akhtar A, Zink D, Becker PB (2000) Chromodomains are protein-RNA interaction modules. Nature 407:405–409CrossRefPubMedGoogle Scholar
  14. 14.
    Flanagan JF, Mi LZ, Chruszcz M, Cymborowski M, Clines KL, Kim Y, Minor W, Rastinejad F, Khorasanizadeh S (2005) Double chromodomains cooperate to recognize the methylated histone H3 tail. Nature 438:1181–1185CrossRefPubMedGoogle Scholar
  15. 15.
    Flanagan JF, Blus BJ, Kim D, Clines KL, Rastinejad F, Khorasanizadeh S (2007) Molecular implications of evolutionary differences in CHD double chromodomains. J Mol Biol 369:334–342CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Marfella CG, Imbalzano AN (2007) The Chd family of chromatin remodelers. Mutat Res 618:30–40CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Morra R, Lee BM, Shaw H, Tuma R, Mancini EJ (2012) Concerted action of the PHD, chromo and motor domains regulates the human chromatin remodelling ATPase CHD4. FEBS Lett 586:2513–2521CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Tanaka Y, Tawaramoto-Sasanuma M, Kawaguchi S, Ohta T, Yoda K, Kurumizaka H, Yokoyama S (2004) Expression and purification of recombinant human histones. Methods 33:3–11CrossRefPubMedGoogle Scholar
  19. 19.
    Klinker H, Haas C, Harrer N, Becker PB, Mueller-Planitz F (2014) Rapid purification of recombinant histones. PLoS One 9, e104029CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Dyer PN, Edayathumangalam RS, White CL, Bao Y, Chakravarthy S, Muthurajan UM, Luger K (2004) Reconstitution of nucleosome core particles from recombinant histones and DNA. Methods Enzymol 375:23–44CrossRefPubMedGoogle Scholar
  21. 21.
    Langst G, Bonte EJ, Corona DF, Becker PB (1999) Nucleosome movement by CHRAC and ISWI without disruption or trans-displacement of the histone octamer. Cell 97:843–852CrossRefPubMedGoogle Scholar
  22. 22.
    Jonsson U, Fagerstam L, Ivarsson B, Johnsson B, Karlsson R, Lundh K, Lofas S, Persson B, Roos H, Ronnberg I et al (1991) Real-time biospecific interaction analysis using surface plasmon resonance and a sensor chip technology. Biotechniques 11:620–627PubMedGoogle Scholar
  23. 23.
    Lisal J, Tuma R (2005) Cooperative mechanism of RNA packaging motor. J Biol Chem 280:23157–23164CrossRefPubMedGoogle Scholar
  24. 24.
    Svergun DI, Koch MHJ, Timmins PA, May RP (2013) Small angle X-ray and neutron scattering from solutions of biological macromolecules. International Union of Crystallography Texts on Crystallography, Oxford University Press, OxfordCrossRefGoogle Scholar
  25. 25.
    Konarev PV, Volkov VV, Sokolova AV, Koch MHJ, Svergun DI (2003) PRIMUS: a Windows PC-based system for small-angle scattering data analysis. J Appl Crystallogr 36:1277–1282CrossRefGoogle Scholar
  26. 26.
    Svergun DI (1991) Mathematical methods in small-angle scattering data analysis. J Appl Crystallogr 24Google Scholar
  27. 27.
    Svergun DI (1992) Determination of the regularization parameter in indirect-transform methods using perceptual criteria. J Appl Crystallogr 25:495–503CrossRefGoogle Scholar
  28. 28.
    Svergun DI (1999) Restoring low resolution structure of biological macromolecules from solution scattering using simulated annealing. Biophys J 76:2879–2886CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Franke D, Svergun DI (2009) DAMMIF, a program for rapid ab-initio shape determination in small-angle scattering. J Appl Crystallogr 42:342–346CrossRefGoogle Scholar
  30. 30.
    Kozin MB, Svergun DI (2000) Automated matching of high- and low-resolution structural models. J Appl Crystallogr 34:33–41CrossRefGoogle Scholar
  31. 31.
    Volkov VV, Svergun DI (2003) Uniqueness of ab initio shape determination in small-angle scattering. J Appl Crystallogr 36:860–864CrossRefGoogle Scholar
  32. 32.
    Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, Ferrin TE (2004) UCSF chimera—a visualization system for exploratory research and analysis. J Comput Chem 25:1605–1612CrossRefPubMedGoogle Scholar
  33. 33.
    Ha T, Rasnik I, Cheng W, Babcock HP, Gauss GH, Lohman TM, Chu S (2002) Initiation and re-initiation of DNA unwinding by the Escherichia coli Rep helicase. Nature 419:638–641CrossRefPubMedGoogle Scholar
  34. 34.
    Sharma A, Leach RN, Gell C, Zhang N, Burrows PC, Shepherd DA, Wigneshweraraj S, Smith DA, Zhang X, Buck M, Stockley PG, Tuma R (2014) Domain movements of the enhancer-dependent sigma factor drive DNA delivery into the RNA polymerase active site: insights from single molecule studies. Nucleic Acids Res 42:5177–5190CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Svergun DI, Petoukhov MV, Koch MHJ (2001) Determination of domain structure of proteins from X-ray solution scattering. Biophys J 80:2946–2953CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Rosa Morra
    • 1
  • Tomas Fessl
    • 2
  • Yuchong Wang
    • 2
  • Erika J. Mancini
    • 3
  • Roman Tuma
    • 2
    Email author
  1. 1.Faculty of Life Sciences, Manchester Institute of BiotechnologyUniversity of ManchesterManchesterUK
  2. 2.Astbury Centre for Structural Molecular BiologyUniversity of LeedsLeedsUK
  3. 3.School of Life SciencesUniversity of SussexBrightonUK

Personalised recommendations