Bacterial Chromosome Dynamics by Locus Tracking in Fluorescence Microscopy

  • Avelino Javer
  • Marco Cosentino Lagomarsino
  • Pietro CicutaEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1431)


Bacterial chromosomes have been shown in the last two decades to have remarkable spatial organization at various scales, and also well-defined movements during the cell cycle, for example, to reliably segregate daughter chromosomes. More recently, various labs have begun investigating the short-time dynamics (displacements during time intervals of 0.1–100 s), which one hopes to link to structure, in analogy to “microrheology” approaches applied successfully to study mechanical response of complex fluids. These studies of chromosome fluctuation dynamics have revealed differences of fluctuation amplitude across the chromosome, and different characters of motion depending on the time window of interest. The highly nontrivial motion at the shortest experimentally accessible times is still not fully understood in terms of physical models of DNA and cytosol. We describe how to carry out tracking experiments of single locus and how to analyze locus motility. We point out the importance of considering in the analysis the number of GFP molecules per fluorescent locus.

Key words

Chromatin Bacterial nucleoid Loci and foci Fluorescence imaging Mean-squared displacement Polymer dynamics 



We are very grateful to K. Dorfman, V.G. Benza, B. Sclavi, A. Spakowitz, O. Espeli, P.A. Wiggins, N. Kleckner, L. Mirny, and G. Fraser for helpful discussions, Zhicheng Long, Eileen Nugent, Marco Grisi, Kamin Siriwatwetchakul, J. Kotar, and C. Saggioro for their help with the experimental setups and bacterial strains, and O. Espeli and F. Boccard for the gift of bacterial strains developed in their laboratory. This work was supported by the International Human Frontier Science Program Organization, grant RGY0070/2014, the EU ITN-Transpol, Royal Society International Joint Project, and Consejo Nacional de Ciencia y Tecnologia (CONACYT).


  1. 1.
    Javer A, Long Z, Nugent E, Grisi M, Siriwatwetchakul K, Dorfman KD, Cicuta P, Cosentino Lagomarsino M (2013) Short-time movement of E. coli chromosomal loci depends on coordinate and subcellular localization. Nat Commun 4:3003CrossRefPubMedGoogle Scholar
  2. 2.
    Javer A, Kuwada NJ, Long Z, Benza VG, Dorfman KD, Wiggins PA, Cicuta P, Lagomarsino MC (2014) Persistent super-diffusive motion of Escherichia coli chromosomal loci. Nat Commun 5:3854CrossRefPubMedGoogle Scholar
  3. 3.
    Valkenburg J, Woldringh C (1984) Phase separation between nucleoid and cytoplasm in Escherichia coli as defined by immersive refractometry. J Bacteriol 160:1151–1157PubMedPubMedCentralGoogle Scholar
  4. 4.
    Mondal J, Bratton BP, Li Y, Yethiraj A, Weisshaar JC (2011) Entropy-based mechanism of ribosome-nucleoid segregation in E. coli cells. Biophys J 100:2605–2613CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Wiggins PA, Cheveralls KC, Martin JS, Lintner R, Kondev J (2010) Strong intranucleoid interactions organize the Escherichia coli chromosome into a nucleoid filament. Proc Natl Acad Sci U S A 107:4991–4995CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Fisher JK, Bourniquel A, Witz G, Weiner B, Prentiss M, Kleckner N (2013) Four-dimensional imaging of E. coli nucleoid organization and dynamics in living cells. Cell 153:882–895CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Hadizadeh Yazdi N, Guet CC, Johnson RC, Marko JF (2012) Variation of the folding and dynamics of the Escherichia coli chromosome with growth conditions. Mol Microbiol 86:1318–1333CrossRefPubMedGoogle Scholar
  8. 8.
    Youngren B, Nielsen HJ, Jun S, Austin S, Jo H (2014) The multifork Escherichia coli chromosome is a self-duplicating and self-segregating thermodynamic ring polymer. Genes Dev 28:71–84CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Jun S, Wright A (2010) Entropy as the driver of chromosome segregation. Nat Rev Microbiol 8:600–607CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Jun S, Mulder B (2006) Entropy-driven spatial organization of highly confined polymers: lessons for the bacterial chromosome. Proc Natl Acad Sci U S A 103:12388–12393CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Lim HC, Surovtsev IV, Beltran BG, Huang F, Bewersdorf J, Jacobs-Wagner C (2014) Evidence for a DNA-relay mechanism in ParABS-mediated chromosome segregation. eLife 3, e02758CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Jung Y, Jeon C, Kim J, Jeong H, Jun S, Ha B-Y (2012) Ring polymers as model bacterial chromosomes: confinement, chain topology, single chain statistics, and how they interact. Soft Matter 8:2095CrossRefGoogle Scholar
  13. 13.
    Bryant JA, Sellars LE, Busby SJW, Lee DJ (2014) Chromosome position effects on gene expression in Escherichia coli K-12. Nucleic Acids Res 42(18):1–10CrossRefGoogle Scholar
  14. 14.
    Cagliero C, Grand RS, Jones MB, Jin DJ, O’Sullivan JM (2013) Genome conformation capture reveals that the Escherichia coli chromosome is organized by replication and transcription. Nucleic Acids Res 41:6058–6071CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Alberts B, Johnson A, Lewis J, Raff M, Roberts K, Walter P (2002) “Molecular” biology of the cell. Garland Science, New York, NYGoogle Scholar
  16. 16.
    Reyes-Lamothe R, Wang X, Sherratt D (2008) Escherichia coli and its chromosome. Trends Microbiol 16:238–245CrossRefPubMedGoogle Scholar
  17. 17.
    Wang X, Montero Llopis P, Rudner DZ (2013) Organization and segregation of bacterial chromosomes. Nat Rev Genet 14:191–203CrossRefPubMedGoogle Scholar
  18. 18.
    Joshi MC, Bourniquel A, Fisher J, Ho BT, Magnan D, Kleckner N, Bates D (2011) Escherichia coli sister chromosome separation includes an abrupt global transition with concomitant release of late-splitting intersister snaps. Proc Natl Acad Sci U S A 108:2765–2770CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Espeli O, Mercier R, Boccard F, Espeli O (2008) DNA dynamics vary according to macrodomain topography in the E. coli chromosome. Mol Microbiol 68:1418–1427CrossRefPubMedGoogle Scholar
  20. 20.
    Nielsen HJ, Li Y, Youngren B, Hansen FG, Austin S (2006) Progressive segregation of the Escherichia coli chromosome. Mol Microbiol 61:383–393CrossRefPubMedGoogle Scholar
  21. 21.
    Wang XD, Liu X, Possoz C, Sherratt DJ (2006) The two Escherichia coli chromosome arms locate to separate cell halves. Genes Dev 20:1727–1731CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Kuwada NJ, Cheveralls KC, Traxler B, Wiggins PA (2013) Mapping the driving forces of chromosome structure and segregation in Escherichia coli. Nucleic Acids Res 41:1–8CrossRefGoogle Scholar
  23. 23.
    Pelletier J, Halvorsen K, Ha B-Y, Paparcone R, Sandler SJ, Woldringh CL, Wong WP, Jun S (2012) Physical manipulation of the Escherichia coli chromosome reveals its soft nature. Proc Natl Acad Sci U S A 109:E2649–E2656CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Hong S-H, Toro E, Mortensen KI, de la Rosa MAD, Doniach S, Shapiro L, Spakowitz AJ, McAdams HH (2013) Caulobacter chromosome in vivo configuration matches model predictions for a supercoiled polymer in a cell-like confinement. Proc Natl Acad Sci U S A 110:1674–1679CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Weber SC, Spakowitz AJ, Theriot JA (2010) Bacterial chromosomal loci move subdiffusively through a viscoelastic cytoplasm. Phys Rev Lett 104:1–4Google Scholar
  26. 26.
    Weber SC, Spakowitz AJ, Theriot JA (2012) Nonthermal ATP-dependent fluctuations contribute to the in vivo motion of chromosomal loci. Proc Natl Acad Sci U S A 109:7338–7343CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Weber SC, Thompson MA, Moerner WE, Spakowitz AJ, Theriot JA (2012) Analytical tools to distinguish the effects of localization error, confinement, and medium elasticity on the velocity autocorrelation function. Biophys J 102:2443–2450CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Cicuta P, Donald AM (2007) Microrheology: a review of the method and applications. Soft Matter 3:1449CrossRefGoogle Scholar
  29. 29.
    Saxton MJ (2009) Single-particle tracking. In: Jue T (ed) Fundamental concepts in biophysics, chap. 6. Humana, Totowa, NJ, pp 147–180Google Scholar
  30. 30.
    Levi V, Gratton E (2007) Exploring dynamics in living cells by tracking single particles. Cell Biochem Biophys 48:1–15CrossRefPubMedGoogle Scholar
  31. 31.
    Meijering E, Dzyubachyk O, Smal I (2012) Methods for cell and particle tracking. Methods Enzymol 504:183–200CrossRefPubMedGoogle Scholar
  32. 32.
    Crocker J (1996) Methods of digital video microscopy for colloidal studies. J Colloid Interface Sci 179:298–310CrossRefGoogle Scholar
  33. 33.
    Weber SC, Theriot JA, Spakowitz AJ (2010) Subdiffusive motion of a polymer composed of subdiffusive monomers. Phys Rev E 82:1–11Google Scholar
  34. 34.
    Saxton M (2008) Single-particle tracking: connecting the dots. Nat Methods 5:671–672CrossRefPubMedGoogle Scholar
  35. 35.
    Cheezum MK, Walker WF, Guilford WH (2001) Quantitative comparison of algorithms for tracking single fluorescent particles. Biophys J 81:2378–2388CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Jaqaman K, Loerke D, Mettlen M, Kuwata H, Grinstein S, Schmid SL, Danuser G (2008) Robust single-particle tracking in live-cell time-lapse sequences. Nat Methods 5:695–702CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Gonzalez RC, Woods RE (2006) Digital image processing, 3rd edn. Prentice-Hall, Inc., Upper Saddle River, NJGoogle Scholar
  38. 38.
    Thompson RE, Larson DR, Webb WW (2002) Precise nanometer localization analysis for individual fluorescent probes. Biophys J 82:2775–2783CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Savin T, Doyle PS (2005) Static and dynamic errors in particle tracking microrheology. Biophys J 88:623–638CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Avelino Javer
    • 1
  • Marco Cosentino Lagomarsino
    • 1
  • Pietro Cicuta
    • 1
    Email author
  1. 1.Cavendish LaboratoryUniversity of CambridgeCambridgeUK

Personalised recommendations