Skip to main content

Bioinformatics Based Approaches to Study Virus–Host Interactions During Chikungunya Virus Infection

  • Protocol
  • First Online:
Book cover Chikungunya Virus

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1426))

Abstract

The limitations of high-throughput genomic methods used for studying virus–host interactions make it difficult to directly obtain insights on virus pathogenesis. In this chapter, the central steps of a protein structure similarity based computational approach used to predict the host interactors of Chikungunya virus are explained by highlighting the important aspects that need to be considered. Identification of such conserved set of putative interactions that allow the virus to take control of the host has the potential to deepen our understanding of the virus-specific remodeling processes of the host cell and illuminate new arenas of disease intervention.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Friedel CC (2013) Computational analysis of viral-host interactome. In: Bailer SM, Leiber D (eds) Virus-host interactions: methods and protocols, methods in molecular biology, 1st edn. Springer, New York, pp 115–130

    Chapter  Google Scholar 

  2. Shoemaker BA, Panchenko AR (2007) Deciphering protein-protein interactions. Part ii. Computational methods to predict protein and domain interaction partners. PLoS Comput Biol 3(4):e43

    Article  PubMed  PubMed Central  Google Scholar 

  3. Aloy P, Russell RB (2003) InterPreTS: protein interaction prediction through tertiary structure. Bioinformatics 19(1):161–162

    Article  CAS  PubMed  Google Scholar 

  4. Lu L, Lu H, Skolnick J (2002) MULTIPROSPECTOR: an algorithm for the prediction of protein-protein interactions by multimeric threading. Proteins 49:350–364

    Article  CAS  PubMed  Google Scholar 

  5. Davis FP, Braberg H, Shen MY et al (2006) Protein complex compositions predicted by structural similarity. Nucleic Acids Res 34:2943–2952

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Tastan O, Qi Y, Carbonell JG, Klein-Seetharaman J (2009) Prediction of interactions between HIV-1 and human proteins by information integration. Pac Symp Biocomput 14:516–527

    Google Scholar 

  7. Evans P, Dampier W, Ungar L et al (2009) Prediction of HIV-1 virus host protein interactions using virus and host sequence motif. BMC Med Genomics 2:27–39

    Article  PubMed  PubMed Central  Google Scholar 

  8. Doolittle JM, Gomez SM (2010) Structural similarity-based predictions of protein interactions between HIV-1 and Homo sapiens. Virol J 7:82–96

    Article  PubMed  PubMed Central  Google Scholar 

  9. Davis FP, Barkan DT, Eswar N et al (2007) Host-pathogen protein interactions predicted by comparative modeling. Protein Sci 16(12):2585–2596

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Franzosa EA, Xia Y (2011) Structural principles within the human-virus protein-protein interaction network. Proc Natl Acad Sci U S A 108(26):10538–10543

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Zhang QC, Petrey D, Deng L et al (2012) Structure based prediction of protein-protein interactions on a genome wide scale. Nature 490:556–561

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Doolittle JM, Gomez SM (2011) Mapping protein interactions between Dengue virus and its human and insect hosts. PLoS Negl Trop Dis 5(2):e954

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Rajasekharan S, Rana J, Gulati S et al (2013) Predicting the host protein interactors of Chandipura virus using a structural similarity-based approach. FEMS Pathog Dis 69(1):29–35

    CAS  Google Scholar 

  14. Sreejith R, Rana J, Dudha N et al (2012) Mapping of interactions among Chikungunya virus nonstructural proteins. Virus Res 169(1):231–236

    Article  CAS  PubMed  Google Scholar 

  15. Dudha N, Rana J, Rajasekharan S et al (2014) Host-pathogen interactome analysis of Chikungunya virus envelope proteins E1 and E2. Virus Genes 50(2):200–209. doi:10.1007/s11262-014-1161-x

    Article  Google Scholar 

  16. Berman HM, Westbrook J, Feng Z et al (2000) The Protein Data Bank. Nucleic Acids Res 28:235–242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Zhang Y (2008) I-TASSER server for protein 3D structure prediction. BMC Bioinformatics 9:40–47

    Article  PubMed  PubMed Central  Google Scholar 

  18. Dudha N, Appaiahgari MB, Bharati K et al (2012) Molecular cloning and characterization of Chikungunya virus genes from Indian isolate of 2006 outbreak. J Pharm Res 5(7):3860–3863

    Google Scholar 

  19. Mishra GR, Suresh M, Kumaran K et al (2006) Human protein reference database—2006 update. Nucleic Acids Res 34:D411–D414

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Stark C, Breitkreutz BJ, Reguly T et al (2006) BioGRID: a general repository for interaction datasets. Nucleic Acids Res 34:D535–D539

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Szklarczyk D, Franceschini A, Kuhn M et al (2011) The STRING database in 2011: functional interaction networks of proteins globally integrated and scored. Nucleic Acids Res 39:D561–D568

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Aranda B, Achuthan P, Alam-Faruque Y et al (2009) The IntAct molecular interaction database in 2010. Nucleic Acids Res 38:D525–D531

    Article  PubMed  PubMed Central  Google Scholar 

  23. Crosby MA, Goodman JL, Strelets VB et al (2006) FlyBase: genomes by the dozen. Nucleic Acids Res 35:D486–D491

    Article  PubMed  PubMed Central  Google Scholar 

  24. McCarthy F, Wang N, Magee GB et al (2006) AgBase: a functional genomics resource for agriculture. BMC Genomics 7:229–241

    Article  PubMed  PubMed Central  Google Scholar 

  25. Ashburner M, Ball CA, Blake JA et al (2000) Gene ontology: tool for the unification of biology. Nat Genet 25:25–29

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Dennis G, Sherman B, Hosack D et al (2003) DAVID: database for annotation, visualization, and integrated discovery. Genome Biol 4:P3

    Article  PubMed  Google Scholar 

  27. Huang DW, Sherman BT, Lempicki RA (2009) Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc 4:44–57

    Article  CAS  Google Scholar 

  28. Matthews L, Gopinath G, Gillespie M et al (2009) Reactome knowledgebase of human biological pathways and processes. Nucleic Acids Res 37:D619–D622

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Shannon P, Markiel A, Ozier O et al (2003) Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 13:2498–2504

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Rana J, Sreejith R, Gulati S et al (2013) Deciphering the host-pathogen interface in Chikungunya virus-mediated sickness. Arch Virol 158(6):1159–1172

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanjay Gupta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Rajasekharan, S., Gupta, S. (2016). Bioinformatics Based Approaches to Study Virus–Host Interactions During Chikungunya Virus Infection. In: Chu, J., Ang, S. (eds) Chikungunya Virus. Methods in Molecular Biology, vol 1426. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3618-2_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3618-2_17

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3616-8

  • Online ISBN: 978-1-4939-3618-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics