Skip to main content

Multiplexed Isobaric Tagging Protocols for Quantitative Mass Spectrometry Approaches to Auditory Research

  • Protocol
  • First Online:
Auditory and Vestibular Research

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1427))

Abstract

Modern biologists have at their disposal a large array of techniques used to assess the existence and relative or absolute quantity of any molecule of interest in a sample. However, implementing most of these procedures can be a daunting task for the first time, even in a lab with experienced researchers. Just choosing a protocol to follow can take weeks while all of the nuances are examined and it is determined whether a protocol will (a) give the desired results, (b) result in interpretable and unbiased data, and (c) be amenable to the sample of interest. We detail here a robust procedure for labeling proteins in a complex lysate for the ultimate differential quantification of protein abundance following experimental manipulations. Following a successful outcome of the labeling procedure, the sample is submitted for mass spectrometric analysis, resulting in peptide quantification and protein identification. While we will concentrate on cells in culture, we will point out procedures that can be used for labeling lysates generated from tissues, along with any minor modifications required for such samples. We will also outline, but not fully document, other strategies used in our lab to label proteins prior to mass spectrometric analysis, and describe under which conditions each procedure may be desirable. What is not covered in this chapter is anything but the most brief introduction to mass spectrometry (instrumentation, theory, etc.), nor do we attempt to cover much in the way of software used for post hoc analysis. These two topics are dependent upon one’s resources, and where applicable, one’s collaborators. We strongly encourage the reader to seek out expert advice on topics not covered here.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Anderson L, Seilhamer J (1997) A comparison of selected mRNA and protein abundances in human liver. Electrophoresis 18:533–537

    Article  CAS  PubMed  Google Scholar 

  2. Gygi S, Rochon Y, Franza B, Aebersold R (1999) Correlation between protein and mRNA abundance in yeast. Mol Cell Biol 19:1720–1730

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Grant S, Blackstock W (2001) Proteomics in neuroscience: from protein to network. J Neurosci 21:8315–8318

    CAS  PubMed  Google Scholar 

  4. Gavin A, Aloy P, Grandi P et al (2006) Proteome survey reveals modularity of the yeast cell machinery. Nature 440:631–636

    Article  CAS  PubMed  Google Scholar 

  5. Coughenour H, Spaulding R, Thompson C (2004) The synaptic vesicle proteome: a comparative study in membrane protein identification. Proteomics 4:3141–3155

    Article  CAS  PubMed  Google Scholar 

  6. Andersen J, Lam Y, Leung A, Ong S, Lyon C, Lamond A, Mann M (2005) Nucleolar proteome dynamics. Nature 433:77–83

    Article  CAS  PubMed  Google Scholar 

  7. Yates J, Gilchrist A, Howell K, Bergeron J (2005) Proteomics of organelles and large cellular structures. Nat Rev Mol Cell Biol 6:702–714

    Article  CAS  PubMed  Google Scholar 

  8. Langnaese K, Seidenbecher C, Wex H, Seidel B, Hartung K, Appeltauer U, Garner A, Voss B, Mueller B, Garner CC, Gundelfinger ED (1996) Protein components of a rat brain synaptic junctional protein preparation. Brain Res Mol Brain Res 42:118–122

    Article  CAS  PubMed  Google Scholar 

  9. Yates J (1998) Mass spectrometry and the age of the proteome. J Mass Spectrom 33:1–19

    Article  CAS  PubMed  Google Scholar 

  10. Yates J (2000) Mass spectrometry. From genomics to proteomics. Trends Genet 16:5–8

    Article  CAS  PubMed  Google Scholar 

  11. Fountoulakis M (2004) Application of proteomics technologies in the investigation of the brain. Mass Spectrom Rev 23:231–258

    Article  CAS  PubMed  Google Scholar 

  12. Ferguson P, Smith R (2003) Proteome analysis by mass spectrometry. Ann Rev Biophys Biomol Struct 32:399–424

    Article  CAS  Google Scholar 

  13. Mann M, Hendrickson R, Pandey A (2001) Analysis of proteins and proteomes by mass spectrometry. Ann Rev Biochem 70:437–473

    Article  CAS  PubMed  Google Scholar 

  14. Gygi S, Rist B, Gerber S, Turecek F, Gelb M, Aebersold R (1999) Quantitative analysis of complex protein mixtures using isotope-coded affinity tags. Nat Biotechnol 17:994–999

    Article  CAS  PubMed  Google Scholar 

  15. Shiio Y, Aebersold R (2006) Quantitative proteome analysis using isotope-coded affinity tags and mass spectrometry. Nature Prot 1:139–145

    Article  CAS  Google Scholar 

  16. Quan L, Miao L (2013) CID, ETD, and HCD fragmentation to study protein post-translational modifications. Mod Chem Appl 1:e102

    Google Scholar 

  17. Gizaw ST, Koda T, Amano M, Kamimura K, Ohashi T, Hinou H, Nishimura S-I (2015) A comprehensive glycome profiling of Huntington’s disease transgenic mice. Biochem Biophys Acta 1850:1704–1718

    Article  CAS  PubMed  Google Scholar 

  18. Ebhardt HA, Root A, Sander C, Aebersold R (2015) Applications of targeted proteomics in systems biology and translational medicine. Proteomics 15(18):3193–3208

    Google Scholar 

  19. Ong S, Mann M (2006) A practical recipe for stable isotope labeling by amino acids in cell culture (SILAC). Nat Prot 1:2650–2660

    Article  CAS  Google Scholar 

  20. Amanchy R, Kalume D, Pandey A (2005) Stable isotope labeling with amino acids in cell culture (SILAC) for studying dynamics of protein abundance and posttranslational modifications. Sci STKE 2005, pl2

    Google Scholar 

  21. Blagoev B, Ong S, Kratchmarova I, Mann M (2004) Temporal analysis of phosphotyrosine-dependent signaling networks by quantitative proteomics. Nat Biotechnol 22:1139–1145

    Article  CAS  PubMed  Google Scholar 

  22. Krijgsveld J, Ketting RF, Mahmoudi T, Johansen J, Artal-Sanz M, Verrijzer CP, Plasterk RH, Heck AJ (2003) Metabolic labeling of C. elegans and D. melanogaster for quantitative proteomics. Nat Biotechnol 21:927–931

    Article  CAS  PubMed  Google Scholar 

  23. Julka S, Regnier F (2004) Quantification in proteomics through stable isotope coding: a review. J Proteome Res 3:350–363

    Article  CAS  PubMed  Google Scholar 

  24. Rivolta M, Grix N, Lawlor P, Ashmore J, Jagger D, Holley M (1998) Auditory hair cell precursors immortalized from the mammalian inner ear. Proc Biol Sci 265:1595–1603

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Rivolta M, Holley M (2002) Cell lines in inner ear research. J Neurobiol 53:306–318

    Article  PubMed  Google Scholar 

  26. Bork P, Jensen LJ, von Mering C, Ramani AK, Lee I, Marcotte EM (2004) Protein interaction networks from yeast to human. Curr Opin Struct Biol 14:292–299

    Article  CAS  PubMed  Google Scholar 

  27. Sharan R, Suthram S, Kelley RM, Kuhn T, McCuine S, Uetz P, Sittler T, Karp RM, Ideker T (2005) Conserved patterns of protein interaction in multiple species. Proc Natl Acad Sci U S A 102:1974–1979

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Sharan R, Ulitsky I, Shamir R (2007) Network-based prediction of protein function. Mol Systems Biol 3:88

    Article  Google Scholar 

  29. Fernandez-Ballester G, Serrano L (2006) Prediction of protein-protein interaction based on structure. Meth Mol Biol 340:207–234

    CAS  Google Scholar 

  30. Iragne F, Nikolski M, Mathieu B, Auber D, Sherman D (2005) Proviz: protein interaction visualization and exploration. Bioinformatics 21:272–274

    Article  CAS  PubMed  Google Scholar 

  31. Yan W, Lee H, Yi EC et al (2004) System-based proteomic analysis of the interferon response in human liver cells. Genome Biol 5:R54

    Article  PubMed  PubMed Central  Google Scholar 

  32. Suderman M, Hallett M (2007) Tools for visually exploring biological networks. Bioinformatics 23:2651–2659

    Article  CAS  PubMed  Google Scholar 

  33. Han K, Park B, Kim H, Hong J, Park J (2004) Hpid: the human protein interaction database. Bioinformatics 20:2466–2470

    Article  CAS  PubMed  Google Scholar 

  34. Chatr-aryamontri A, Ceol A, Palazzi LM, Nardelli G, Schneider MV, Castagnoli L, Cesareni G (2007) Mint: the molecular interaction database. Nucleic Acids Res 35:D572–D574

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Jones P, Cote RG, Cho SY, Klie S, Martens L, Quinn AF, Thorneycroft D, Hermjakob H (2008) Pride: new developments and new datasets. Nucleic Acids Res 36(Database Issue):D878–D883

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Jones P, Cote RG, Martens L, Quinn AF, Taylor CF, Derache W, Hermjakob H, Apweiler R (2006) Pride: a public repository of protein and peptide identifications for the proteomics community. Nucleic Acids Res 34:D659–D663

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B, Ideker T (2003) Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 13:2498–2504

    Google Scholar 

Download references

Acknowledgements

This work was supported by funding to DEV from NIH R01 DC006258, R21 DC015124, and Univ. Mississippi Medical Center Office of Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Douglas E. Vetter .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Vetter, D.E., Basappa, J. (2016). Multiplexed Isobaric Tagging Protocols for Quantitative Mass Spectrometry Approaches to Auditory Research. In: Sokolowski, B. (eds) Auditory and Vestibular Research. Methods in Molecular Biology, vol 1427. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3615-1_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3615-1_7

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3613-7

  • Online ISBN: 978-1-4939-3615-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics