Skip to main content

The Consultancy Activity on In Silico Models for Genotoxic Prediction of Pharmaceutical Impurities

  • Protocol
  • First Online:
In Silico Methods for Predicting Drug Toxicity

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1425))

Abstract

The toxicological assessment of DNA-reactive/mutagenic or clastogenic impurities plays an important role in the regulatory process for pharmaceuticals; in this context, in silico structure-based approaches are applied as primary tools for the evaluation of the mutagenic potential of the drug impurities. The general recommendations regarding such use of in silico methods are provided in the recent ICH M7 guideline stating that computational (in silico) toxicology assessment should be performed using two (Q)SAR prediction methodologies complementing each other: a statistical-based method and an expert rule-based method.

Based on our consultant experience, we describe here a framework for in silico assessment of mutagenic potential of drug impurities. Two main applications of in silico methods are presented: (1) support and optimization of drug synthesis processes by providing early indication of potential genotoxic impurities and (2) regulatory evaluation of genotoxic potential of impurities in compliance with the ICH M7 guideline. Some critical case studies are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. ICH Harmonised Tripartite Guideline (2006) Impurities in new drug substances – Q3A(R2). Current Step 4 version. http://www.ich.org/products/guidelines.html. Accessed 6 May 2015

  2. ICH Harmonised Tripartite Guideline (2006) Impurities in new drug products – Q3B(R2). Current Step 4 version. http://www.ich.org/products/guidelines.html. Accessed 6 May 2015

  3. ICH Harmonised Tripartite Guideline (2009) Guidance on nonclinical safety studies for the conduct of human clinical trials and marketing authorization for pharmaceuticals – M3(R2). Current Step 4 version. http://www.ich.org/products/guidelines.html. Accessed 6 May 2015

  4. ICH Harmonised Tripartite Guideline (2014) Assessment and control of DNA reactive (mutagenic) impurities in pharmaceuticals to limit potential carcinogenic risk – M7. Current Step 4 version. http://www.ich.org/products/guidelines.html. Accessed 6 May 2015

  5. OECD – Organization for Economic Co-operation and Development (2006) Report on the regulatory uses and applications in oecd member countries of (quantitative) structure-activity relationship [(Q)SAR] models in the assessment of new and existing chemicals. OECD Environment Health and Safety Publications, Series on testing and assessment no. 58. ENV/JM/MONO(2006)25. http://www.oecd.org/officialdocuments/publicdisplaydocumentpdf/?cote=env/jm/mono(2006)25&doclanguage=en. Accessed 11 May 2015

  6. OECD – Organization for Economic Co-operation and Development (2007). Guidance document on the validation of (quantitative) structure activity relationship [(Q)SAR] Models. OECD Environment Health and Safety Publications, series on testing and assessment no. 69. ENV/JM/MONO(2007)2. http://www.oecd.org/officialdocuments/publicdisplaydocumentpdf/?cote=env/jm/mono(2007)2&doclanguage=en. Accessed 11 May 2015

  7. Dobo KL, Greene N, Fred C et al (2012) In silico methods combined with expert knowledge rule out mutagenic potential of pharmaceutical impurities: an industry survey. Regul Toxicol Pharmacol 62(3):449–455

    Article  CAS  PubMed  Google Scholar 

  8. Sutter A, Amberg A, Boyer S et al (2013) Use of in silico systems and expert knowledge for structure-based assessment of potentially mutagenic impurities. Regul Toxicol Pharmacol 67(1):39–52

    Article  CAS  PubMed  Google Scholar 

  9. Powley MW (2014) (Q)SAR assessments of potentially mutagenic impurities: a regulatory perspective on the utility of expert knowledge and data submission. Regul Toxicol Pharmacol 71(2):295–300

    Article  PubMed  Google Scholar 

  10. Serafimova R, Gatnik MF, Worth A (2010) Review of QSAR models and software tools for predicting genotoxicity and carcinogenicity. JRC Scientific and Technical Reports EUR 24427 EN – 2010. https://eurl-ecvam.jrc.ec.europa.eu/laboratories-research/predictive_toxicology/doc/EUR_24427_EN.pdf. Accessed 6 May 2015

  11. Worth AP, Lapenna S, Serafimova R (2013) QSAR and metabolic assessment tools in the assessment of genotoxicity. Methods Mol Biol 930:125–162

    Article  CAS  PubMed  Google Scholar 

  12. Roncaglioni A, Toropov AA, Toropova AP, Benfenati E (2013) In silico methods to predict drug toxicity. Curr Opin Pharmacol 13(5):802–806

    Article  CAS  PubMed  Google Scholar 

  13. Fioravanzo F, Bassan A, Pavan M et al (2012) Role of in silico genotoxicity tools in the regulatory assessment of pharmaceutical impurities. SAR QSAR Environ Res 23(3-4):257–277. doi:10.1080/1062936X.2012.657236

    Article  CAS  PubMed  Google Scholar 

  14. Cassano A, Raitano G, Mombelli E et al (2014) Evaluation of QSAR models for the prediction of ames genotoxicity: a retrospective exercise on the chemical substances registered under the EU REACH regulation. J Environ Sci Health C Environ Carcinog Ecotoxicol Rev 32(3):273–298

    Article  PubMed  Google Scholar 

  15. ACD/Percepta, release 2014. Advanced Chemistry Development, Inc., Toronto, ON, Canada. www.acdlabs.com

    Google Scholar 

  16. Lanevskij K, Juska L, Dapkunas J et al (2012) In silico test battery for rapid evaluation of genotoxic and carcinogenic potential of chemicals. Poster presented at 243rd ACS national meeting, San Diego, California, 25–29 Mar 2012

    Google Scholar 

  17. Didziapetris R, Dapkunas J, Sazonovas A, Japertas P (2010) Trainable structure-activity relationship model for virtual screening of CYP3A4 inhibition. J Comput Aided Mol Des 24(11):891–906

    Article  CAS  PubMed  Google Scholar 

  18. Leis M, Lidbury BA, Yang C et al (2012) Novel technologies and an overall strategy to allow hazard assessment and risk prediction of chemicals, cosmetics, and drugs with animal-free methods. Altex 29(4):373–388

    Article  Google Scholar 

  19. Cherkasov A, Muratov EN, Fourches D et al (2014) QSAR modeling: where have you been? Where are you going to? J Med Chem 57(12):4977–5010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. CORINA Symphony, Molecular Networks GmbH, Erlangen, Germany. www.molecular-networks.com. Accessed 6 May 2015

  21. Leadscope Model Applier, version 2.0 (2015) Leadscope Inc., Columbus, OH. http://www.leadscope.com

  22. Dearfield KL, Benz RD (1999) Can the new genetic toxicology tests be used for regulatory safety decisions? Environ Mol Mutagen 33(2):91–93

    Article  CAS  PubMed  Google Scholar 

  23. Matthews EJ, Kruhlak NL, Cimino MC et al (2006) An analysis of genetic toxicity, reproductive and developmental toxicity, and carcinogenicity data: I. Identification of carcinogens using surrogate endpoints. Regul Toxicol Pharmacol 44(2):83–96

    Article  CAS  PubMed  Google Scholar 

  24. Matthews EJ, Kruhlak NL, Cimino MC et al (2006) An analysis of genetic toxicity, reproductive and developmental toxicity, and carcinogenicity data: II. Identification of genotoxicants, reprotoxicants, and carcinogens using in silico methods. Regul Toxicol Pharmacol 44:97–110

    Article  CAS  PubMed  Google Scholar 

  25. Ferrari T, Gini G (2010) An open source multistep model to predict mutagenicity from statistical analysis and relevant structural alerts. Chem Cent J 4(Suppl 1):S2

    Article  PubMed  PubMed Central  Google Scholar 

  26. VegaNIC Application (Virtual Models for evaluating the properties of chemicals within a global architecture), ver 1.1.0. Laboratory of Environmental Chemistry and Toxicology of Mario Negri Institute of Pharmacological Research. http://www.vega-qsar.eu/download.html. Accessed 6 May 2015

  27. Ellison CM, Sherhod R, Cronin MT et al (2011) Assessment of methods to define the applicability domain of structural alert models. Chem Inf Model 51(5):975–985. doi:10.1021/ci1000967

    CAS  Google Scholar 

  28. Hillebrecht A, Muster W, Brigo A et al (2011) Comparative evaluation of in silico systems for ames test mutagenicity prediction: scope and limitations. Chem Res Toxicol 24(6):843–854

    Article  CAS  PubMed  Google Scholar 

  29. Toxtree (Toxic Hazard Estimation by decision tree approach), ver. 2.6.13. Ideaconsult Ltd. http://toxtree.sourceforge.net/index.html. Accessed 6 May 2015

  30. Benigni R, Bossa C, Jeliazkova N et al (2008) The Benigni/Bossa rulebase for mutagenicity and carcinogenicity – a module of Toxtree. JRC Scientific and Technical Reports, EUR 23241 EN – 2008. https://eurl-ecvam.jrc.ec.europa.eu/laboratories-research/predictive_toxicology/doc/EUR_23241_EN.pdf. Accessed 6 May 2015

    Google Scholar 

  31. ECHA – European Chemicals Agency (2008) Guidance on information requirements and chemical safety assessment. Chapter R.6: QSARs and grouping of chemicals. http://echa.europa.eu/documents/10162/13632/information_requirements_r6_en.pdf. Accessed 6 May 2015

  32. OECD – Organization for Economic Co-operation and Development (2007) Guidance on grouping of chemicals. OECD Environment Health and Safety Publications, series on testing and assessment no. 80. ENV/JM/MONO(2007)28. http://www.oecd.org/officialdocuments/publicdisplaydocumentpdf/?cote=env/jm/mono(2007)28&doclanguage=en. Accessed 11 May 2015

  33. ECHA – European Chemicals Agency (2012) Practical guide 6: how to report read-across and categories. http://echa.europa.eu/documents/10162/13655/pg_report_readacross_en.pdf. Accessed 6 May 2015

  34. OECD (Q)SAR Application Toolbox, version 3.3.2 (2015) Organization for economic co-operation and development. http://www.oecd.org/chemicalsafety/risk-assessment/theoecdqsartoolbox.htm. Accessed 6 May 2015

  35. OECD – Organization for Economic Co-operation and Development (2009) Guidance document for using the OECD (Q)SAR application toolbox to develop chemical categories according to the OECD guidance on grouping of chemicals. OECD Environment Health and Safety Publications, series on testing and assessment no. 102. ENV/JM/MONO(2009)5. http://www.oecd.org/officialdocuments/publicdisplaydocumentpdf/?doclanguage=en&cote=env/jm/mono(2009)5. Accessed 11 May 2015

  36. ToxRead, v. 0.9 BETA (2015) Istituto di Ricerche Farmacologiche Mario Negri – Laboratory of Environmental Toxicology and Chemistry. http://www.toxgate.eu/. Accessed 6 May 2015

  37. Judson P (2009) Combining predictions. In: Royal Society of Chemistry (ed) Knowledge-based expert systems in chemistry: not counting on computers, 1st edn. Royal Society of Chemistry, London

    Google Scholar 

  38. Cronin MTD (2010) Prediction of harmful human health effects of chemicals from structure. In: Puzyn T, Leszczynski J, Cronin MTD (eds) Recent advances in QSAR studies: methods and applications. Springer, New York, NY

    Google Scholar 

  39. Ellison CM, Madden JC, Judson P, Cronin MTD (2010) Using in silico tools in a weight of evidence approach to aid toxicological assessment. Mol Inf 26(1-2):97–110

    Article  Google Scholar 

  40. ECHA – European Chemicals Agency (2010) Practical guide 2: how to report weight of evidence. https://echa.europa.eu/documents/10162/13655/pg_report_weight_of_evidence_en.pdf Accessed 8 June 2015

  41. Nendza M, Gabbert S, Kühne R et al (2013) A comparative survey of chemistry-driven in silico methods to identify hazardous substances under REACH. Regul Toxicol Pharmacol 66(3):301–314

    Article  PubMed  Google Scholar 

  42. Roy PP, Kovarich S, Gramatica P (2011) QSAR model reproducibility and applicability: a case study of rate constants of hydroxyl radical reaction models applied to polybrominated diphenyl ethers and (benzo-)triazoles. J Comput Chem 32:2386–2396. doi:10.1002/jcc.21820

    Article  CAS  PubMed  Google Scholar 

  43. Naven RT, Greene N, Williams RV (2012) Latest advances in computational genotoxicity prediction. Expert Opin Drug Metab Toxicol 8(12):1579–1587

    Article  PubMed  Google Scholar 

  44. DSSTox (Distributed Structure-searchable Toxicity) database. U.S. Environmental Protection Agency. http://www.epa.gov/ncct/dsstox. Accessed 6 May 2015

  45. ECHA CHEM database. European Chemical Agency (ECHA). http://echa.europa.eu/chem_data_en.asp. Accessed 6 May 2015

  46. NTP (National Toxicology Program) database. U.S. National Institute of Environmental Health Sciences, National Institutes of Health. http://ntp.niehs.nih.gov. Accessed 6 May 2015

  47. GENE-TOX (Genetic Toxicology Databank) database. U.S. National Library of Medicine, National Institutes of Health. http://toxnet.nlm.nih.gov/newtoxnet/genetox.htm Accessed 6 May 2015

  48. OECD – Organization for Economic Co-operation and Development (2013), User Manual based on QSAR Toolbox version 3.0. Strategies for grouping chemicals to fill data gaps to assess genetic toxicity and genotoxic carcinogenicity. http://www.oecd.org/env/ehs/risk-assessment/genetic%20toxicity.pdf. Accessed 7 May 2015

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simona Kovarich .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Pavan, M., Kovarich, S., Bassan, A., Broccardo, L., Yang, C., Fioravanzo, E. (2016). The Consultancy Activity on In Silico Models for Genotoxic Prediction of Pharmaceutical Impurities. In: Benfenati, E. (eds) In Silico Methods for Predicting Drug Toxicity. Methods in Molecular Biology, vol 1425. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3609-0_21

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3609-0_21

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3607-6

  • Online ISBN: 978-1-4939-3609-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics