Skip to main content

QSAR Models at the US FDA/NCTR

  • Protocol
  • First Online:
In Silico Methods for Predicting Drug Toxicity

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1425))

Abstract

Quantitative structure–activity relationship (QSAR) has been used in the scientific research community for many decades and applied to drug discovery and development in the industry. QSAR technologies are advancing fast and attracting possible applications in regulatory science. To facilitate the development of reliable QSAR models, the FDA had invested a lot of efforts in constructing chemical databases with a variety of efficacy and safety endpoint data, as well as in the development of computational algorithms. In this chapter, we briefly describe some of the often used databases developed at the FDA such as EDKB (Endocrine Disruptor Knowledge Base), EADB (Estrogenic Activity Database), LTKB (Liver Toxicity Knowledge Base), and CERES (Chemical Evaluation and Risk Estimation System) and the technologies adopted by the agency such as Mold2 program for calculation of a large and diverse set of molecular descriptors and decision forest algorithm for QSAR model development. We also summarize some QSAR models that have been developed for safety evaluation of the FDA-regulated products.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Brown AC, Fraser TR (1868) On the connection between chemical constitution and physiological action; with special reference to the physiological action of the salts of the ammonium bases derived from strychnia, brucia, thebaia, codeia, morphia, and nicotia. J Anat Physiol 2(2):224–242

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Richardson BW (1869) Lectures on experimental and practical medicine. Physiological research on alcohols. Med Times Gaz 2 (1869):703–706

    Google Scholar 

  3. Hansch C, Muir RM, Fujita T, Maloney PP, Geiger F, Streich M (1963) The correlation of biological activity of plant growth regulators and chloromycetin derivatives with Hammett constants and partition coefficients. J Am Chem Soc 85(18):2817–2824

    Article  CAS  Google Scholar 

  4. Taft RW, Lewis IC (1959) Evaluation of resonance effects on reactivity by application of the linear inductive energy relationship. V. Concerning a σR scale of resonance effects 1,2. J Am Chem Soc 81(20):5343–5352

    Article  CAS  Google Scholar 

  5. Shen J, Xu L, Fang H, Richard AM, Bray JD, Judson RS et al (2013) EADB: an estrogenic activity database for assessing potential endocrine activity. Toxicol Sci 135(2):277–291

    Article  CAS  PubMed  Google Scholar 

  6. Ding D, Xu L, Fang H, Hong H, Perkins R, Harris S et al (2010) The EDKB: an established knowledge base for endocrine disrupting chemicals. BMC Bioinformatics 11(Suppl 6):S5

    Article  Google Scholar 

  7. Shi L, Tong W, Fang H, Xie Q, Hong H, Perkins R et al (2002) An integrated “4-phase” approach for setting endocrine disruption screening priorities –phase I and II predictions of estrogen receptor binding affinity. SAR QSAR Environ Res 13(1):69–88

    Article  CAS  PubMed  Google Scholar 

  8. Tong W, Fang H, Hong H, Xie Q, Perkins R, Anson J et al (2003) Regulatory application of SAR/QSAR for priority setting of endocrine disruptors: a perspective*. Pure Appl Chem 75(11):2375–2388

    CAS  Google Scholar 

  9. Tong W, Hong H, Xie Q, Shi L, Fang H, Perkins R (2005) Assessing QSAR limitations-A regulatory perspective. Curr Comput Aided Drug Des 1(2):195–205

    Google Scholar 

  10. Tong W, Perkins R, Fang H, Hong H, Xie Q, Branham W et al (2002) Development of quantitative structure-activity relationships (QSARs) and their use for priority setting in the testing strategy of endocrine disruptors. Regul Res Perspect 1(3):1–13

    Google Scholar 

  11. Hong H, Neamati N, Wang S, Nicklaus MC, Mazumder A, Zhao H et al (1997) Discovery of HIV-1 integrase inhibitors by pharmacophore searching. J Med Chem 40(6):930–936

    Article  CAS  PubMed  Google Scholar 

  12. Hong H, Neamati N, Winslow HE, Christensen JL, Orr A, Pommier Y et al (1998) Identification of HIV-1 integrase inhibitors based on a four-point pharmacophore. Antivir Chem Chemother 9(6):461–472

    Article  CAS  PubMed  Google Scholar 

  13. Neamati N, Hong H, Sunder S, Milne GW, Pommier Y (1997) Potent inhibitors of human immunodeficiency virus type 1 integrase: identification of a novel four-point pharmacophore and tetracyclines as novel inhibitors. Mol Pharmacol 52(6):1041–1055

    CAS  PubMed  Google Scholar 

  14. Neamati N, Hong H, Mazumder A, Wang S, Sunder S, Nicklaus MC et al (1997) Depsides and depsidones as inhibitors of HIV-1 integrase: discovery of novel inhibitors through 3D database searching. J Med Chem 40(6):942–951

    Article  CAS  PubMed  Google Scholar 

  15. Nicklaus MC, Neamati N, Hong H, Mazumder A, Sunder S, Chen J et al (1997) HIV-1 integrase pharmacophore: discovery of inhibitors through three-dimensional database searching. J Med Chem 40(6):920–929

    Article  CAS  PubMed  Google Scholar 

  16. Ng HW, Zhang W, Shu M, Luo H, Ge W, Perkins R et al (2014) Competitive molecular docking approach for predicting estrogen receptor subtype alpha agonists and antagonists. BMC Bioinformatics 15(Suppl 11):S4

    Article  PubMed  PubMed Central  Google Scholar 

  17. Shen J, Zhang W, Fang H, Perkins R, Tong W, Hong H (2013) Homology modeling, molecular docking, and molecular dynamics simulations elucidated alpha-fetoprotein binding modes. BMC Bioinformatics 14(Suppl 14):S6

    Article  PubMed  PubMed Central  Google Scholar 

  18. Tie Y, McPhail B, Hong H, Pearce BA, Schnackenberg LK, Ge W et al (2012) Modeling chemical interaction profiles: II. Molecular docking, spectral data-activity relationship, and structure-activity relationship models for potent and weak inhibitors of cytochrome P450 CYP3A4 isozyme. Molecules 17(3):3407

    Article  CAS  PubMed  Google Scholar 

  19. Hong H, Fang H, Xie Q, Perkins R, Sheehan DM, Tong W (2003) Comparative molecular field analysis (CoMFA) model using a large diverse set of natural, synthetic and environmental chemicals for binding to the androgen receptor. SAR QSAR Environ Res 14(5–6):373–388

    Article  CAS  PubMed  Google Scholar 

  20. Hong H, Tong W, Fang H, Shi L, Xie Q, Wu J et al (2002) Prediction of estrogen receptor binding for 58,000 chemicals using an integrated system of a tree-based model with structural alerts. Environ Health Perspect 110(1):29–36

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Tong W, Hong H, Fang H, Xie Q, Perkins R (2003) Decision forest: combining the predictions of multiple independent decision tree models. J Chem Inf Comput Sci 43(2):525–531

    Article  CAS  PubMed  Google Scholar 

  22. Tong W, Xie Q, Hong H, Shi L, Fang H, Perkins R et al (2004) Using decision forest to classify prostate cancer samples on the basis of SELDI-TOF MS data: assessing chance correlation and prediction confidence. Environ Health Perspect 112(16):1622–1627

    Article  PubMed  PubMed Central  Google Scholar 

  23. Hong H, Tong W, Perkins R, Fang H, Xie Q, Shi L (2004) Multiclass decision forest-a novel pattern recognition method for multiclass classification in microarray data analysis. DNA Cell Biol 23(10):685–694

    Article  CAS  PubMed  Google Scholar 

  24. Xie Q, Ratnasinghe LD, Hong H, Perkins R, Tang ZZ, Hu N et al (2005) Decision forest analysis of 61 single nucleotide polymorphisms in a case-control study of esophageal cancer; a novel method. BMC Bioinformatics 6(Suppl 2):S4

    Article  PubMed  PubMed Central  Google Scholar 

  25. Hong H, Tong W, Xie Q, Fang H, Perkins R (2005) An in silico ensemble method for lead discovery: decision forest. SAR QSAR Environ Res 16(4):339–347

    Article  CAS  PubMed  Google Scholar 

  26. McPhail B, Tie Y, Hong H, Pearce BA, Schnackenberg LK, Ge W et al (2012) Modeling chemical interaction profiles: I. Spectral data-activity relationship and structure-activity relationship models for inhibitors and non-inhibitors of cytochrome P450 CYP3A4 and CYP2D6 isozymes. Molecules 17(3):3383–3406

    Article  CAS  PubMed  Google Scholar 

  27. Chen M, Hong H, Fang H, Kelly R, Zhou G, Borlak J et al (2013) Quantitative structure-activity relationship models for predicting drug-induced liver injury based on FDA-approved drug labeling annotation and using a large collection of drugs. Toxicol Sci 136(1):242–249

    Article  CAS  PubMed  Google Scholar 

  28. Liu J, Mansouri K, Judson RS, Martin MT, Hong H, Chen M et al (2015) Predicting hepatotoxicity using toxcast in vitro bioactivity and chemical structure. Chem Res Toxicol 28(4):738–751

    Article  CAS  PubMed  Google Scholar 

  29. Blair RM, Fang H, Branham WS, Hass BS, Dial SL, Moland CL et al (2000) The estrogen receptor relative binding affinities of 188 natural and xenochemicals: structural diversity of ligands. Toxicol Sci 54(1):138–153

    Article  CAS  PubMed  Google Scholar 

  30. Fang H, Tong W, Branham WS, Moland CL, Dial SL, Hong H et al (2003) Study of 202 natural, synthetic, and environmental chemicals for binding to the androgen receptor. Chem Res Toxicol 16(10):1338–1358

    Article  CAS  PubMed  Google Scholar 

  31. Zhang M, Chen M, Tong W (2012) Is toxicogenomics a more reliable and sensitive biomarker than conventional indicators from rats to predict drug-induced liver injury in humans? Chem Res Toxicol 25(1):122–129

    Article  CAS  PubMed  Google Scholar 

  32. Chen M, Bisgin H, Tong L, Hong H, Fang H, Borlak J et al (2014) Toward predictive models for drug-induced liver injury in humans: are we there yet? Biomark Med 8(2):201–213

    Article  CAS  PubMed  Google Scholar 

  33. Chen M, Borlak J, Tong W (2014) Predicting idiosyncratic drug-induced liver injury – some recent advances. Expert Rev Gastroenterol Hepatol 8(7):721–723

    Article  CAS  PubMed  Google Scholar 

  34. Chen M, Zhang J, Wang Y, Liu Z, Kelly R, Zhou G et al (2013) The liver toxicity knowledge base: a systems approach to a complex end point. Clin Pharmacol Ther 93(5):409–412

    Article  CAS  PubMed  Google Scholar 

  35. Chen M, Vijay V, Shi Q, Liu Z, Fang H, Tong W (2011) FDA-approved drug labeling for the study of drug-induced liver injury. Drug Discov Today 16(15–16):697–703

    Article  PubMed  Google Scholar 

  36. Chen M, Zhang M, Borlak J, Tong W (2012) A decade of toxicogenomic research and its contribution to toxicological science. Toxicol Sci 130(2):217–228

    Article  CAS  PubMed  Google Scholar 

  37. Chen M, Borlak J, Tong W (2013) High lipophilicity and high daily dose of oral medications are associated with significant risk for drug-induced liver injury. Hepatology 58(1):388–396

    Article  CAS  PubMed  Google Scholar 

  38. Yu K, Geng X, Chen M, Zhang J, Wang B, Ilic K et al (2014) High daily dose and being a substrate of cytochrome P450 enzymes are two important predictors of drug-induced liver injury. Drug Metab Dispos 42(4):744–750

    Article  PubMed  Google Scholar 

  39. Chen M, Tung CW, Shi Q, Guo L, Shi L, Fang H et al (2014) A testing strategy to predict risk for drug-induced liver injury in humans using high-content screen assays and the “rule-of-two” model. Arch Toxicol 88(7):1439–1449

    Article  CAS  PubMed  Google Scholar 

  40. Chen M, Shi L, Kelly R, Perkins R, Fang H, Tong W (2011) Selecting a single model or combining multiple models for microarray-based classifier development? – a comparative analysis based on large and diverse datasets generated from the MAQC-II project. BMC Bioinformatics 12(Suppl 10):S3

    Article  CAS  Google Scholar 

  41. Yang Z-Z, Wang C-S (2003) Atom-bond electronegativity equalization method and its applications based on density functional theory. J Theor Comput Chem 2(02):273–299

    Article  CAS  Google Scholar 

  42. Arulmozhiraja S, Morita M (2004) Structure-activity relationships for the toxicity of polychlorinated dibenzofurans: approach through density functional theory-based descriptors. Chem Res Toxicol 17(3):348–356

    Article  CAS  PubMed  Google Scholar 

  43. Liu SS, Cui SH, Yin DQ, Shi YY, Wang LS (2003) QSAR studies on the COX-2 inhibition by 3, 4-diarylcycloxazolones based on MEDV descriptor. Chin J Chem 21(11):1510–1516

    Article  CAS  Google Scholar 

  44. Chiu T-L, So S-S (2004) Development of neural network QSPR models for Hansch substituent constants. 1. Method and validations. J Chem Inf Comput Sci 44(1):147–153

    Article  CAS  PubMed  Google Scholar 

  45. Chiu T-L, So S-S (2004) Development of neural network QSPR models for hansch substituent constants. 2. Applications in QSAR studies of HIV-1 reverse transcriptase and dihydrofolate reductase inhibitors. J Chem Inf Comput Sci 44(1):154–160

    Article  CAS  PubMed  Google Scholar 

  46. Zhihua L, Yuzhang W, Xuejun Q, Yuegang Z, Bing N, Ying W (2002) Use of a novel electrotopological descriptor for the prediction of biological activity of peptide analogues. Lett Pept Sci 9(6):273–281

    Google Scholar 

  47. Agrawal V, Mishra K, Khadikar P (2003) Multivariate analysis for modelling some antibacterial agents. Oxid Commun 26(1):14–21

    CAS  Google Scholar 

  48. McGregor MJ, Pallai PV (1997) Clustering of large databases of compounds: using the MDL “Keys” as structural descriptors. J Chem Inf Comput Sci 37(3):443–448

    Article  CAS  Google Scholar 

  49. Brown RD, Martin YC (1997) The information content of 2D and 3D structural descriptors relevant to ligand-receptor binding. J Chem Inf Comput Sci 37(1):1–9

    Article  CAS  Google Scholar 

  50. Matter H, Pötter T (1999) Comparing 3D pharmacophore triplets and 2D fingerprints for selecting diverse compound subsets. J Chem Inf Comput Sci 39(6):1211–1225

    Article  CAS  Google Scholar 

  51. Hong H, Xie Q, Ge W, Qian F, Fang H, Shi L et al (2008) Mold(2), molecular descriptors from 2D structures for chemoinformatics and toxicoinformatics. J Chem Inf Model 48(7):1337–1344

    Article  CAS  PubMed  Google Scholar 

  52. Draper NR, Smith H, Pownell E (1966) Applied regression analysis. Wiley, New York

    Google Scholar 

  53. Leffler J, Grunwald E (1963) Rates and equilibrium constants of organic reaction. Wiley, New York

    Google Scholar 

  54. Stanton DT, Jurs PC (1990) Development and use of charged partial surface area structural descriptors in computer-assisted quantitative structure-property relationship studies. Anal Chem 62(21):2323–2329

    Article  CAS  Google Scholar 

  55. Rohrbaugh RH, Jurs PC (1987) Descriptions of molecular shape applied in studies of structure/activity and structure/property relationships. Anal Chim Acta 199:99–109

    Article  CAS  Google Scholar 

  56. Nishihara T, Takatori S, Kitagawa Y, Hori S (2000) Estrogenic activities of 517 chemicals by yeast two-hybrid assay. J Health Sci

    Google Scholar 

  57. Safe S, Kim K (2008) Non-classical genomic estrogen receptor (ER)/specificity protein and ER/activating protein-1 signaling pathways. J Mol Endocrinol 41(5):263–275

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Lathe R, Kotelevtsev Y (2014) Steroid signaling: ligand-binding promiscuity, molecular symmetry, and the need for gating. Steroids 82c:14–22

    Article  Google Scholar 

  59. Ng HW, Perkins R, Tong W, Hong H (2014) Versatility or promiscuity: the estrogen receptors, control of ligand selectivity and an update on subtype selective ligands. Int J Env Res Public Health 11(9):8709–8742

    Article  CAS  Google Scholar 

  60. Schug TT, Janesick A, Blumberg B, Heindel JJ (2011) Endocrine disrupting chemicals and disease susceptibility. J Steroid Biochem Mol Biol 127(3–5):204–215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Falconer IR, Chapman HF, Moore MR, Ranmuthugala G (2006) Endocrine-disrupting compounds: a review of their challenge to sustainable and safe water supply and water reuse. Environ Toxicol 21(2):181–191

    Article  CAS  PubMed  Google Scholar 

  62. Kitchen DB, Decornez H, Furr JR, Bajorath J (2004) Docking and scoring in virtual screening for drug discovery: methods and applications. Nat Rev Drug Discov 3(11):935–949

    Article  CAS  PubMed  Google Scholar 

  63. Huang N, Shoichet BK, Irwin JJ (2006) Benchmarking sets for molecular docking. J Med Chem 49(23):6789–6801

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Kola I, Landis J (2004) Can the pharmaceutical industry reduce attrition rates? Nat Rev Drug Discov 3(8):711–716

    Article  CAS  PubMed  Google Scholar 

  65. Merlot C (2010) Computational toxicology – a tool for early safety evaluation. Drug Discov Today 15(1):16–22

    Article  CAS  PubMed  Google Scholar 

  66. Xu JJ, Kalgutkar AS, Will Y, Dykens J, Tengstrand E, Hsieh F (2009) Predicting drug-induced hepatotoxicity in vitro, in silico and in vivo approach. In: Faller B, Urban L (eds) Hit and lead profiling. pp 345–85

    Google Scholar 

  67. Greene N, Fisk L, Naven RT, Note RR, Patel ML, Pelletier DJ (2010) Developing structure–activity relationships for the prediction of hepatotoxicity. Chem Res Toxicol 23(7):1215–1222

    Article  CAS  PubMed  Google Scholar 

  68. Breiman L (2001) Random forests. Mach Learn 45(1):5–32

    Article  Google Scholar 

Download references

Declaration

The views presented in this article do not necessarily reflect those of the US Food and Drug Administration.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huixiao Hong .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Hong, H., Chen, M., Ng, H.W., Tong, W. (2016). QSAR Models at the US FDA/NCTR. In: Benfenati, E. (eds) In Silico Methods for Predicting Drug Toxicity. Methods in Molecular Biology, vol 1425. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3609-0_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3609-0_18

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3607-6

  • Online ISBN: 978-1-4939-3609-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics