Advertisement

Analysis of Dendritic Cell Function Using Clec9A-DTR Transgenic Mice

  • Piotr Tetlak
  • Christiane RuedlEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1423)

Abstract

The Clec9A-diphtheria toxin receptor (DTR) transgenic mouse strain provides a robust animal model to study the function of lymphoid organ-resident CD8+ dendritic cells (DCs) and nonlymphoid organ-specific CD103+ DCs in infectioous diseases and inflammation. Here we describe some basic protocols for CD8+/CD103+ DC isolation, for their in vivo depletion, and for their characterization by multi-color flow cytometry analysis. As an example for in vivo functional characterization of this DC subset, we present here the experimental cerebral malaria model. Furthermore, we illustrate advantages and pitfalls of the Clec9A-DTR system.

Key words

Clec9A/DNGR-1 Diphtheria toxin receptor (DTR) transgenic mice Dendritic cell (DC) subsets Cross-priming Interferon-γ experimental cerebral malaria (ΕCM) 

Notes

Acknowledgments

We thank Klaus Karjalainen for his critical reading of the manuscript. This work was supported by National Medical Research Council grants NMMR/1253/2010, NMRC/1307/2011, and MOE2014-T2-1-011 to C.R. The authors have no conflicting financial interests.

References

  1. 1.
    Hashimoto D, Miller J, Merad M (2011) Dendritic cell and macrophage heterogeneity in vivo. Immunity 35:323–335CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Schraml BU, van Blijswijk J, Zelenay S, Whitney PG, Filby A et al (2013) Genetic tracing via DNGR-1 expression history defines dendritic cells as a hematopoietic lineage. Cell 154:843–858CrossRefPubMedGoogle Scholar
  3. 3.
    Hey YY, O'Neill HC (2012) Murine spleen contains a diversity of myeloid and dendritic cells distinct in antigen presenting function. J Cell Mol Med 16:2611–2619CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Varol C, Vallon-Eberhard A, Elinav E, Aychek T, Shapira Y et al (2009) Intestinal lamina propria dendritic cell subsets have different origin and functions. Immunity 31:502–512CrossRefPubMedGoogle Scholar
  5. 5.
    Pabst O, Bernhardt G (2010) The puzzle of intestinal lamina propria dendritic cells and macrophages. Eur J Immunol 40:2107–2111CrossRefPubMedGoogle Scholar
  6. 6.
    Rescigno M (2010) Intestinal dendritic cells. Adv Immunol 107:109–138CrossRefPubMedGoogle Scholar
  7. 7.
    Miller JC, Brown BD, Shay T, Gautier EL, Jojic V et al (2012) Deciphering the transcriptional network of the dendritic cell lineage. Nat Immunol 13:888–899CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Vander Lugt B, Khan AA, Hackney JA, Agrawal S, Lesch J et al (2014) Transcriptional programming of dendritic cells for enhanced MHC class II antigen presentation. Nat Immunol 15:161–167CrossRefPubMedGoogle Scholar
  9. 9.
    den Haan JM, Lehar SM, Bevan MJ (2000) CD8(+) but not CD8(−) dendritic cells cross-prime cytotoxic T cells in vivo. J Exp Med 192:1685–1696CrossRefGoogle Scholar
  10. 10.
    Macatonia SE, Hosken NA, Litton M, Vieira P, Hsieh CS et al (1995) Dendritic cells produce IL-12 and direct the development of Th1 cells from naive CD4+ T cells. J Immunol 154:5071–5079PubMedGoogle Scholar
  11. 11.
    Poulin LF, Reyal Y, Uronen-Hansson H, Schraml BU, Sancho D et al (2012) DNGR-1 is a specific and universal marker of mouse and human Batf3-dependent dendritic cells in lymphoid and nonlymphoid tissues. Blood 119:6052–6062CrossRefPubMedGoogle Scholar
  12. 12.
    Caminschi I, Proietto AI, Ahmet F, Kitsoulis S, Shin Teh J et al (2008) The dendritic cell subtype-restricted C-type lectin Clec9A is a target for vaccine enhancement. Blood 112:3264–3273CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Villadangos JA, Shortman K (2010) Found in translation: the human equivalent of mouse CD8+ dendritic cells. J Exp Med 207:1131–1134CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Poulin LF, Salio M, Griessinger E, Anjos-Afonso F, Craciun L et al (2010) Characterization of human DNGR-1+ BDCA3+ leukocytes as putative equivalents of mouse CD8alpha + dendritic cells. J Exp Med 207:1261–1271CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Zhang JG, Czabotar PE, Policheni AN, Caminschi I, Wan SS et al (2012) The dendritic cell receptor Clec9A binds damaged cells via exposed actin filaments. Immunity 36:646–657CrossRefPubMedGoogle Scholar
  16. 16.
    Sancho D, Joffre OP, Keller AM, Rogers NC, Martinez D et al (2009) Identification of a dendritic cell receptor that couples sensing of necrosis to immunity. Nature 458:899–903CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Jung S, Unutmaz D, Wong P, Sano G, De los Santos K et al (2002) In vivo depletion of CD11c + dendritic cells abrogates priming of CD8+ T cells by exogenous cell-associated antigens. Immunity 17:211–220CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Piva L, Tetlak P, Claser C, Karjalainen K, Renia L et al (2012) Cutting edge: Clec9A+ dendritic cells mediate the development of experimental cerebral malaria. J Immunol 189:1128–1132CrossRefPubMedGoogle Scholar
  19. 19.
    Schofield L, Grau GE (2005) Immunological processes in malaria pathogenesis. Nat Rev Immunol 5:722–735CrossRefPubMedGoogle Scholar
  20. 20.
    Baptista FG, Pamplona A, Pena AC, Mota MM, Pied S et al (2010) Accumulation of Plasmodium berghei-infected red blood cells in the brain is crucial for the development of cerebral malaria in mice. Infect Immun 78:4033–4039CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Franke-Fayard B, Trueman H, Ramesar J, Mendoza J, van der Keur M et al (2004) A Plasmodium berghei reference line that constitutively expresses GFP at a high level throughout the complete life cycle. Mol Biochem Parasitol 137:23–33CrossRefPubMedGoogle Scholar
  22. 22.
    Ruedl C, Rieser C, Bock G, Wick G, Wolf H (1996) Phenotypic and functional characterization of CD11c + dendritic cell population in mouse Peyer's patches. Eur J Immunol 26:1801–1806CrossRefPubMedGoogle Scholar
  23. 23.
    Ruedl C, Hubele S (1997) Maturation of Peyer's patch dendritic cells in vitro upon stimulation via cytokines or CD40 triggering. Eur J Immunol 27:1325–1330CrossRefPubMedGoogle Scholar
  24. 24.
    Carroll RW, Wainwright MS, Kim KY, Kidambi T, Gomez ND et al (2010) A rapid murine coma and behavior scale for quantitative assessment of murine cerebral malaria. PLoS One 5Google Scholar
  25. 25.
    Tittel AP, Heuser C, Ohliger C, Llanto C, Yona S et al (2012) Functionally relevant neutrophilia in CD11c diphtheria toxin receptor transgenic mice. Nat Methods 9:385–390CrossRefPubMedGoogle Scholar
  26. 26.
    Bennett CL, van Rijn E, Jung S, Inaba K, Steinman RM et al (2005) Inducible ablation of mouse Langerhans cells diminishes but fails to abrogate contact hypersensitivity. J Cell Biol 169:569–576CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Fukaya T, Murakami R, Takagi H, Sato K, Sato Y et al (2012) Conditional ablation of CD205+ conventional dendritic cells impacts the regulation of T-cell immunity and homeostasis in vivo. Proc Natl Acad Sci U S A 109:11288–11293CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Hildner K, Edelson BT, Purtha WE, Diamond M, Matsushita H et al (2008) Batf3 deficiency reveals a critical role for CD8alpha + dendritic cells in cytotoxic T cell immunity. Science 322:1097–1100CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.School of Biological SciencesNanyang Technological UniversitySingaporeSingapore

Personalised recommendations