In Vitro Generation of Human XCR1+ Dendritic Cells from CD34+ Hematopoietic Progenitors

  • Sreekumar Balan
  • Marc DalodEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1423)


Dendritic cells (DCs) are a heterogeneous population of professional antigen-presenting cells which play a key role in orchestrating immune defenses. Most of the information gained on human DC biology was derived from studies conducted with DCs generated in vitro from peripheral blood CD14+ monocytes (MoDCs) or from CD34+ hematopoietic progenitors. Recent advances in the field revealed that these types of in vitro-derived DCs strikingly differ from the DC subsets that are naturally present in human lymphoid organs, in terms of global gene expression, of specialization in the sensing of different types of danger signals, and of the ability to polarize T lymphocytes toward different functions. Major efforts are being made to better characterize the biology and the functions of lymphoid organ-resident DC subsets in humans, as an essential step for designing innovative DC-based vaccines against infections or cancers. However, this line of research is hampered by the low frequency of certain DC subsets in most tissues, their fragility, and the complexity of the procedures necessary for their purification. Hence, there is a need for robust procedures allowing large-scale in vitro generation of human DC subsets, under conditions allowing their genetic or pharmacological manipulation, to decipher their functions and their molecular regulation. Human CD141+CLEC9A+XCR1+ DCs constitute a very interesting DC subset for the design of immunotherapeutic treatments against infections by intracellular pathogens or against cancer, because these cells resemble mouse professional cross-presenting CD8α+Clec9a+Xcr1+ DCs. Human XCR1+ DCs have indeed been reported by several teams to be more efficient than other human DC subsets for cross-presentation, in particular of cell-associated antigens but also of soluble antigens especially when delivered into late endosomes or lysosomes. However, human XCR1+ DCs are the rarest and perhaps the most fragile of the human DC subsets and hence the most difficult to study ex vivo. Here, we describe a protocol allowing simultaneous in vitro generation of human MoDCs and XCR1+ DCs, which will undoubtedly be extremely useful to better characterize the functional specialization of human XCR1+ DCs and to identify its molecular bases.

Key words

Human immune system CD34+ hematopoietic stem cells Differentiation XCR1+ dendritic cells Monocyte-derived dendritic cells Cross-presentation 



We thank Caetano Reis e Sousa and Lionel Poulin (Immunobiology Laboratory, Cancer Research UK, London, UK) for sharing with us the details of their protocol for in vitro generation of human CLEC9A+ DCs, an achievement they were the first to report to the best of our knowledge. This work was performed in the frame of the I2HD collaborative project between CIML, AVIESAN, and SANOFI. It received additional funding from Inserm, CNRS, Agence Nationale de Recherches sur le SIDA et les hépatites virales (ANRS to M.D.), Institut National du Cancer (INCa grant #2011-155), FRM (Equipe labellisée to M.D.), and the European Research Council under the European Community’s Seventh Framework Programme (FP7/2007–2013 Grant Agreement no. 281225, to M.D.). S.B. was supported through the Agence Nationale de la Recherche (EMICIF, ANR-08-MIEN-008-02 to M.D.) and the I2HD project.


  1. 1.
    Mellman I, Steinman RM (2001) Dendritic cells: specialized and regulated antigen processing machines. Cell 106(3):255–258CrossRefPubMedGoogle Scholar
  2. 2.
    Crozat K, Vivier E, Dalod M (2009) Crosstalk between components of the innate immune system: promoting anti-microbial defenses and avoiding immunopathologies. Immunol Rev 227(1):129–149CrossRefPubMedGoogle Scholar
  3. 3.
    Reis e Sousa C (2006) Dendritic cells in a mature age. Nat Rev Immunol 6(6):476–483CrossRefPubMedGoogle Scholar
  4. 4.
    Ueno H, Klechevsky E, Schmitt N, Ni L, Flamar AL, Zurawski S, Zurawski G, Palucka K, Banchereau J, Oh S (2011) Targeting human dendritic cell subsets for improved vaccines. Semin Immunol 23(1):21–27CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Guilliams M, Henri S, Tamoutounour S, Ardouin L, Schwartz-Cornil I, Dalod M, Malissen B (2010) From skin dendritic cells to a simplified classification of human and mouse dendritic cell subsets. Eur J Immunol 40(8):2089–2094CrossRefPubMedGoogle Scholar
  6. 6.
    Joffre OP, Segura E, Savina A, Amigorena S (2012) Cross-presentation by dendritic cells. Nat Rev Immunol 12(8):557–569CrossRefPubMedGoogle Scholar
  7. 7.
    Alexandre YO, Cocita CD, Ghilas S, Dalod M (2014) Deciphering the role of DC subsets in MCMV infection to better understand immune protection against viral infections. Front Microbiol 5:378CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Crozat K, Tamoutounour S, Vu Manh TP, Fossum E, Luche H, Ardouin L, Guilliams M, Azukizawa H, Bogen B, Malissen B, Henri S, Dalod M (2011) Cutting edge: expression of XCR1 defines mouse lymphoid-tissue resident and migratory dendritic cells of the CD8alpha+ type. J Immunol 187(9):4411–4415CrossRefPubMedGoogle Scholar
  9. 9.
    Zhang JG, Czabotar PE, Policheni AN, Caminschi I, Wan SS, Kitsoulis S, Tullett KM, Robin AY, Brammananth R, van Delft MF, Lu J, O’Reilly LA, Josefsson EC, Kile BT, Chin WJ, Mintern JD, Olshina MA, Wong W, Baum J, Wright MD, Huang DC, Mohandas N, Coppel RL, Colman PM, Nicola NA, Shortman K, Lahoud MH (2012) The dendritic cell receptor Clec9A binds damaged cells via exposed actin filaments. Immunity 36(4):646–657CrossRefPubMedGoogle Scholar
  10. 10.
    Ahrens S, Zelenay S, Sancho D, Hanc P, Kjaer S, Feest C, Fletcher G, Durkin C, Postigo A, Skehel M, Batista F, Thompson B, Way M, Reis e Sousa C, Schulz O (2012) F-actin is an evolutionarily conserved damage-associated molecular pattern recognized by DNGR-1, a receptor for dead cells. Immunity 36(4):635–645CrossRefPubMedGoogle Scholar
  11. 11.
    Sancho D, Joffre OP, Keller AM, Rogers NC, Martinez D, Hernanz-Falcon P, Rosewell I, Reis e Sousa C (2009) Identification of a dendritic cell receptor that couples sensing of necrosis to immunity. Nature 458(7240):899–903CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Tomasello E, Pollet E, Vu Manh T-P, Uzé G, Dalod M (2014) Harnessing mechanistic knowledge on beneficial versus deleterious IFN-I effects to design innovative immunotherapies targeting cytokine activity to specific cell types. Front Immunol 5:526CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Crozat K, Guiton R, Contreras V, Feuillet V, Dutertre CA, Ventre E, Vu Manh TP, Baranek T, Storset AK, Marvel J, Boudinot P, Hosmalin A, Schwartz-Cornil I, Dalod M (2010) The XC chemokine receptor 1 is a conserved selective marker of mammalian cells homologous to mouse CD8alpha+ dendritic cells. J Exp Med 207(6):1283–1292CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Dorner BG, Dorner MB, Zhou X, Opitz C, Mora A, Guttler S, Hutloff A, Mages HW, Ranke K, Schaefer M, Jack RS, Henn V, Kroczek RA (2009) Selective expression of the chemokine receptor XCR1 on cross-presenting dendritic cells determines cooperation with CD8+ T cells. Immunity 31(5):823–833CrossRefPubMedGoogle Scholar
  15. 15.
    Kroczek RA, Henn V (2012) The role of XCR1 and its ligand XCL1 in antigen cross-presentation by murine and human dendritic cells. Front Immunol 3:14CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Idoyaga J, Lubkin A, Fiorese C, Lahoud MH, Caminschi I, Huang Y, Rodriguez A, Clausen BE, Park CG, Trumpfheller C, Steinman RM (2011) Comparable T helper 1 (Th1) and CD8 T-cell immunity by targeting HIV gag p24 to CD8 dendritic cells within antibodies to Langerin, DEC205, and Clec9A. Proc Natl Acad Sci U S A 108(6):2384–2389CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Caminschi I, Proietto AI, Ahmet F, Kitsoulis S, Shin Teh J, Lo JC, Rizzitelli A, Wu L, Vremec D, van Dommelen SL, Campbell IK, Maraskovsky E, Braley H, Davey GM, Mottram P, van de Velde N, Jensen K, Lew AM, Wright MD, Heath WR, Shortman K, Lahoud MH (2008) The dendritic cell subtype-restricted C-type lectin Clec9A is a target for vaccine enhancement. Blood 112(8):3264–3273CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Bonifaz LC, Bonnyay DP, Charalambous A, Darguste DI, Fujii S, Soares H, Brimnes MK, Moltedo B, Moran TM, Steinman RM (2004) In vivo targeting of antigens to maturing dendritic cells via the DEC-205 receptor improves T cell vaccination. J Exp Med 199(6):815–824CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Sancho D, Mourao-Sa D, Joffre OP, Schulz O, Rogers NC, Pennington DJ, Carlyle JR, Reis e Sousa C (2008) Tumor therapy in mice via antigen targeting to a novel, DC-restricted C-type lectin. J Clin Invest 118(6):2098–2110CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Robbins SH, Walzer T, Dembele D, Thibault C, Defays A, Bessou G, Xu H, Vivier E, Sellars M, Pierre P, Sharp FR, Chan S, Kastner P, Dalod M (2008) Novel insights into the relationships between dendritic cell subsets in human and mouse revealed by genome-wide expression profiling. Genome Biol 9(1):R17CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Crozat K, Guiton R, Guilliams M, Henri S, Baranek T, Schwartz-Cornil I, Malissen B, Dalod M (2010) Comparative genomics as a tool to reveal functional equivalences between human and mouse dendritic cell subsets. Immunol Rev 234(1):177–198CrossRefPubMedGoogle Scholar
  22. 22.
    Bachem A, Guttler S, Hartung E, Ebstein F, Schaefer M, Tannert A, Salama A, Movassaghi K, Opitz C, Mages HW, Henn V, Kloetzel PM, Gurka S, Kroczek RA (2010) Superior antigen cross-presentation and XCR1 expression define human CD11c+CD141+ cells as homologues of mouse CD8+ dendritic cells. J Exp Med 207(6):1273–1281CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Cohn L, Chatterjee B, Esselborn F, Smed-Sorensen A, Nakamura N, Chalouni C, Lee BC, Vandlen R, Keler T, Lauer P, Brockstedt D, Mellman I, Delamarre L (2013) Antigen delivery to early endosomes eliminates the superiority of human blood BDCA3+ dendritic cells at cross presentation. J Exp Med 210(5):1049–1063CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Haniffa M, Shin A, Bigley V, McGovern N, Teo P, See P, Wasan PS, Wang XN, Malinarich F, Malleret B, Larbi A, Tan P, Zhao H, Poidinger M, Pagan S, Cookson S, Dickinson R, Dimmick I, Jarrett RF, Renia L, Tam J, Song C, Connolly J, Chan JK, Gehring A, Bertoletti A, Collin M, Ginhoux F (2012) Human tissues contain CD141hi cross-presenting dendritic cells with functional homology to mouse CD103+ nonlymphoid dendritic cells. Immunity 37(1):60–73CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Jongbloed SL, Kassianos AJ, McDonald KJ, Clark GJ, Ju X, Angel CE, Chen CJ, Dunbar PR, Wadley RB, Jeet V, Vulink AJ, Hart DN, Radford KJ (2010) Human CD141+ (BDCA-3)+ dendritic cells (DCs) represent a unique myeloid DC subset that cross-presents necrotic cell antigens. J Exp Med 207(6):1247–1260CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Segura E, Durand M, Amigorena S (2013) Similar antigen cross-presentation capacity and phagocytic functions in all freshly isolated human lymphoid organ-resident dendritic cells. J Exp Med 210(5):1035–1047CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Mittag D, Proietto AI, Loudovaris T, Mannering SI, Vremec D, Shortman K, Wu L, Harrison LC (2011) Human dendritic cell subsets from spleen and blood are similar in phenotype and function but modified by donor health status. J Immunol 186(11):6207–6217CrossRefPubMedGoogle Scholar
  28. 28.
    Adema GJ, de Vries IJ, Punt CJ, Figdor CG (2005) Migration of dendritic cell based cancer vaccines: in vivo veritas? Curr Opin Immunol 17(2):170–174CrossRefPubMedGoogle Scholar
  29. 29.
    Anguille S, Smits EL, Lion E, van Tendeloo VF, Berneman ZN (2014) Clinical use of dendritic cells for cancer therapy. Lancet Oncol 15(7):e257–e267CrossRefPubMedGoogle Scholar
  30. 30.
    Garcia F, Climent N, Guardo AC, Gil C, Leon A, Autran B, Lifson JD, Martinez-Picado J, Dalmau J, Clotet B, Gatell JM, Plana M, Gallart T (2013) A dendritic cell-based vaccine elicits T cell responses associated with control of HIV-1 replication. Sci Transl Med 5(166):166ra2CrossRefPubMedGoogle Scholar
  31. 31.
    Poulin LF, Salio M, Griessinger E, Anjos-Afonso F, Craciun L, Chen JL, Keller AM, Joffre O, Zelenay S, Nye E, Le Moine A, Faure F, Donckier V, Sancho D, Cerundolo V, Bonnet D, Reis e Sousa C (2010) Characterization of human DNGR-1+ BDCA3+ leukocytes as putative equivalents of mouse CD8alpha+ dendritic cells. J Exp Med 207(6):1261–1271CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Chen W, Antonenko S, Sederstrom JM, Liang X, Chan AS, Kanzler H, Blom B, Blazar BR, Liu YJ (2004) Thrombopoietin cooperates with FLT3-ligand in the generation of plasmacytoid dendritic cell precursors from human hematopoietic progenitors. Blood 103(7):2547–2553CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Balan S, Ollion V, Colletti N, Chelbi R, Montanana-Sanchis F, Liu H, Vu Manh TP, Sanchez C, Savoret J, Perrot I, Doffin AC, Fossum E, Bechlian D, Chabannon C, Bogen B, Asselin-Paturel C, Shaw M, Soos T, Caux C, Valladeau-Guilemond J, Dalod M (2014) Human XCR1+ dendritic cells derived in vitro from CD34+ progenitors closely resemble blood dendritic cells, including their adjuvant responsiveness, contrary to monocyte-derived dendritic cells. J Immunol 193(4):1622–1635CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Proietto AI, Mittag D, Roberts AW, Sprigg N, Wu L (2012) The equivalents of human blood and spleen dendritic cell subtypes can be generated in vitro from human CD34(+) stem cells in the presence of fms-like tyrosine kinase 3 ligand and thrombopoietin. Cell Mol Immunol 9(6):446–454CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Thordardottir S, Hangalapura BN, Hutten T, Cossu M, Spanholtz J, Schaap N, Radstake TR, van der Voort R, Dolstra H (2014) The aryl hydrocarbon receptor antagonist StemRegenin 1 promotes human plasmacytoid and myeloid dendritic cell development from CD34+ hematopoietic progenitor cells. Stem Cells Dev 23(9):955–967CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Centre d’Immunologie de Marseille-Luminy, UNIV UM2Aix Marseille UniversitéMarseilleFrance
  2. 2.Unité Mixte de Recherche 1104InsermMarseilleFrance
  3. 3.Unité Mixte de Recherche 7280Centre National de la Recherche Scientifique (CNRS)MarseilleFrance

Personalised recommendations