Advertisement

In Vivo Analysis of Intestinal Mononuclear Phagocytes

  • Caterina Curato
  • Biana Bernshtein
  • Tegest Aychek
  • Steffen JungEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1423)

Abstract

The study of the intestinal dendritic cell (DC) compartment, its homeostasis, regulation, and response to challenges calls for the investigation within the physiological tissue context comprising the unique anatomic constellation of the epithelial single cell layer and the luminal microbiota, as well as neighboring immune and nonimmune cells. Here we provide protocols we developed that use a combination of conditional cell ablation, conditional compartment mutagenesis, and adoptive precursor transfers to study DC and other intestinal mononuclear phagocytes in in vivo context. We will highlight pitfalls and strengths of these approaches.

Key words

Mononuclear phagocytes Dendritic cells Intestine Cell ablation Conditional mutagenesis 

Notes

Acknowledgments

We would like to thank the past and present members of the Jung lab for sharing their protocols. This work was supported by the European Research Council (340345).

References

  1. 1.
    Farache J, Zigmond E, Shakhar G, Jung S (2013) Contributions of dendritic cells and macrophages to intestinal homeostasis and immune defense. Immunol Cell Biol 91(3):232–239CrossRefPubMedGoogle Scholar
  2. 2.
    Edelson BT, KC W, Juang R, Kohyama M, Benoit LA et al (2010) Peripheral CD103+ dendritic cells form a unified subset developmentally related to CD8α + conventional dendritic cells. J Exp Med 207(4):823–836CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Ginhoux F, Liu K, Helft J, Bogunovic M, Greter M et al (2009) The origin and development of nonlymphoid tissue CD103+ DCs. J Exp Med 206(13):3115–3130CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Cerovic V, Houston SA, Westlund J, Utriainen L, Davison ES et al (2015) Lymph-borne CD8α+ dendritic cells are uniquely able to cross-prime CD8+ t cells with antigen acquired from intestinal epithelial cells. Mucosal Immunol 8(1):38–48CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Bogunovic M, Ginhoux F, Helft J, Shang L, Hashimoto D et al (2009) Origin of the lamina propria dendritic cell network. Immunity 31(3):513–525CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Lewis KL, Caton ML, Bogunovic M, Greter M, Grajkowska LT et al (2011) Notch2 receptor signaling controls functional differentiation of dendritic cells in the spleen and intestine. Immunity 35(5):780–791CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Welty NE, Staley C, Ghilardi N, Sadowsky MJ, Igyártó BZ, Kaplan DH (2013) Intestinal lamina propria dendritic cells maintain t cell homeostasis but do not affect commensalism. J Exp Med 210(10):2011–2024CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Schlitzer A, McGovern N, Teo P, Zelante T, Atarashi K et al (2013) Irf4 transcription factor-dependent CD11b+ dendritic cells in human and mouse control mucosal il-17 cytokine responses. Immunity 38(5):970–983CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Persson EK, Uronen-Hansson H, Semmrich M, Rivollier A, Hägerbrand K et al (2013) Irf4 transcription-factor-dependent CD103+CD11b+ dendritic cells drive mucosal t helper 17 cell differentiation. Immunity 38(5):958–969CrossRefPubMedGoogle Scholar
  10. 10.
    Klebanoff CA, Spencer SP, Torabi-Parizi P, Grainger JR, Roychoudhuri R et al (2013) Retinoic acid controls the homeostasis of pre-cDC-derived splenic and intestinal dendritic cells. J Exp Med 210(10):1961–1976CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Cerovic V, Houston SA, Scott CL, Aumeunier A, Yrlid U et al (2013) Intestinal CD103- dendritic cells migrate in lymph and prime effector t cells. Mucosal Immunol 6(1):104–113CrossRefPubMedGoogle Scholar
  12. 12.
    Scott CL, Bain CC, Wright PB, Sichien D, Kotarsky K et al (2015) CCR2 + CD103- intestinal dendritic cells develop from dc-committed precursors and induce interleukin-17 production by t cells. Mucosal Immunol 8:327–39CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Varol C, Vallon-Eberhard A, Elinav E, Aychek T, Shapira Y et al (2009) Intestinal lamina propria dendritic cell subsets have different origin and functions. Immunity 31(3):502–512CrossRefPubMedGoogle Scholar
  14. 14.
    Guilliams M, Ginhoux F, Jakubzick C, Naik SH, Onai N et al (2014) Dendritic cells, monocytes and macrophages: a unified nomenclature based on ontogeny. Nat Rev Immunol 14(8):571–578CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Zigmond E, Varol C, Farache J, Elmaliah E, Satpathy AT et al (2012) Ly6chi monocytes in the inflamed colon give rise to proinflammatory effector cells and migratory antigen-presenting cells. Immunity 37(6):1076–1090CrossRefPubMedGoogle Scholar
  16. 16.
    Mildner A, Jung S (2014) Development and function of dendritic cell subsets. Immunity 40(5):642–656CrossRefPubMedGoogle Scholar
  17. 17.
    Schreiber HA, Loschko J, Karssemeijer RA, Escolano A, Meredith MM et al (2013) Intestinal monocytes and macrophages are required for t cell polarization in response to citrobacter rodentium. J Exp Med 210(10):2025–2039CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Niess JH, Brand S, Gu X, Landsman L, Jung S et al (2005) CX3CR1-mediated dendritic cell access to the intestinal lumen and bacterial clearance. Science 307(5707):254–258CrossRefPubMedGoogle Scholar
  19. 19.
    Tamoutounour S, Henri S, Lelouard H, de Bovis B, de Haar C et al (2012) CD64 distinguishes macrophages from dendritic cells in the gut and reveals the th1-inducing role of mesenteric lymph node macrophages during colitis. Eur J Immunol 42(12):3150–3166CrossRefPubMedGoogle Scholar
  20. 20.
    Ginhoux F, Jung S (2014) Monocytes and macrophages: developmental pathways and tissue homeostasis. Nat Rev Immunol 14(6):392–404CrossRefPubMedGoogle Scholar
  21. 21.
    Rivollier A, He J, Kole A, Valatas V, Kelsall BL (2012) Inflammation switches the differentiation program of ly6chi monocytes from antiinflammatory macrophages to inflammatory dendritic cells in the colon. J Exp Med 209(1):139–155CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Mortha A, Chudnovskiy A, Hashimoto D, Bogunovic M, Spencer SP et al (2014) Microbiota-dependent crosstalk between macrophages and ilc3 promotes intestinal homeostasis. Science 343(6178):1249288CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Diehl GE, Longman RS, Zhang J-X, Breart B, Galan C et al (2013) Microbiota restricts trafficking of bacteria to mesenteric lymph nodes by CX3CR1hi cells. Nature 494(7435):116–120CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Zigmond E, Bernshtein B, Friedlander G, Walker CR, Yona S et al (2014) Macrophage-restricted interleukin-10 receptor deficiency, but not il-10 deficiency, causes severe spontaneous colitis. Immunity 40(5):720–733CrossRefPubMedGoogle Scholar
  25. 25.
    Pappenheimer AM, Harper AA, Moynihan M, Brockes JP (1982) Diphtheria toxin and related proteins: effect of route of injection on toxicity and the determination of cytotoxicity for various cultured cells. J Infect Dis 145(1):94–102CrossRefPubMedGoogle Scholar
  26. 26.
    Yamaizumi M, Mekada E, Uchida T, Okada Y (1978) One molecule of diphtheria toxin fragment a introduced into a cell can kill the cell. Cell 15(1):245–250CrossRefPubMedGoogle Scholar
  27. 27.
    Saito M, Iwawaki T, Taya C, Yonekawa H, Noda M et al (2001) Diphtheria toxin receptor-mediated conditional and targeted cell ablation in transgenic mice. Nat Biotechnol 19(8):746–750CrossRefPubMedGoogle Scholar
  28. 28.
    Jung S, Unutmaz D, Wong P, Sano G-I, De los Santos K et al (2002) In vivo depletion of CD11c + dendritic cells abrogates priming of CD8+ T cells by exogenous cell-associated antigens. Immunity 17(2):211–220CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Bar-On L, Jung S (2010) Defining dendritic cells by conditional and constitutive cell ablation. Immunol Rev 234(1):76–89CrossRefPubMedGoogle Scholar
  30. 30.
    Zheng Y, Valdez PA, Danilenko DM, Hu Y, Sa SM et al (2008) Interleukin-22 mediates early host defense against attaching and effacing bacterial pathogens. Nat Med 14(3):282–289CrossRefPubMedGoogle Scholar
  31. 31.
    Mangan PR, Harrington LE, O’Quinn DB, Helms WS, Bullard DC et al (2006) Transforming growth factor-beta induces development of the Th17 lineage. Nature 441(7090):231–234CrossRefPubMedGoogle Scholar
  32. 32.
    Aychek T, Mildner A, Yona S, Ki-Wook Kim, Lampl N, Reich-Zeliger S, Boon L, Yogev N, Waisman A, Cua D. J, Jung S (2015) IL-23-mediated mononuclear phagocyte crosstalk protects mice from Citrobacter rodentium-induced colon immunopathology. Nat Commun 6:6525. doi: 10.1038/ncomms7525PMCIDGoogle Scholar
  33. 33.
    Varol C, Landsman L, Fogg DK, Greenshtein L, Gildor B et al (2007) Monocytes give rise to mucosal, but not splenic, conventional dendritic cells. J Exp Med 204(1):171–180CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Jung S, Aliberti J, Graemmel P, Sunshine MJ, Kreutzberg GW et al (2000) Analysis of fractalkine receptor CX3CR1 function by targeted deletion and green fluorescent protein reporter gene insertion. Mol Cell Biol 20(11):4106–4114CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Zaft T, Sapoznikov A, Krauthgamer R, Littman DR, Jung S (2005) CD11chigh dendritic cell ablation impairs lymphopenia-driven proliferation of naive and memory CD8+ T cells. J Immunol 175(10):6428–6435CrossRefPubMedGoogle Scholar
  36. 36.
    Zammit DJ, Cauley LS, Pham Q-M, Lefrançois L (2005) Dendritic cells maximize the memory CD8 T cell response to infection. Immunity 22(5):561–570CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Van Rijt LS, Jung S, Kleinjan A, Vos N, Willart M et al (2005) In vivo depletion of lung CD11c+ dendritic cells during allergen challenge abrogates the characteristic features of asthma. J Exp Med 201(6):981–991CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Landsman L, Jung S (2007) Lung macrophages serve as obligatory intermediate between blood monocytes and alveolar macrophages. J Immunol 179(6):3488–3494CrossRefPubMedGoogle Scholar
  39. 39.
    Sapoznikov A, Fischer JAA, Zaft T, Krauthgamer R, Dzionek A, Jung S (2007) Organ-dependent in vivo priming of naive CD4+, but not CD8+, T cells by plasmacytoid dendritic cells. J Exp Med 204(8):1923–1933CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Sapoznikov A, Pewzner-Jung Y, Kalchenko V, Krauthgamer R, Shachar I, Jung S (2008) Perivascular clusters of dendritic cells provide critical survival signals to b cells in bone marrow niches. Nat Immunol 9(4):388–395CrossRefPubMedGoogle Scholar
  41. 41.
    Fogg DK, Sibon C, Miled C, Jung S, Aucouturier P et al (2006) A clonogenic bone marrow progenitor specific for macrophages and dendritic cells. Science 311(5757):83–87CrossRefPubMedGoogle Scholar
  42. 42.
    Geissmann F, Jung S, Littman DR (2003) Blood monocytes consist of two principal subsets with distinct migratory properties. Immunity 19(1):71–82CrossRefPubMedGoogle Scholar
  43. 43.
    Landsman L, Varol C, Jung S (2007) Distinct differentiation potential of blood monocyte subsets in the lung. J Immunol 178(4):2000–2007CrossRefPubMedGoogle Scholar
  44. 44.
    Imai T, Hieshima K, Haskell C, Baba M, Nagira M et al (1997) Identification and molecular characterization of fractalkine receptor CX3CR1, which mediates both leukocyte migration and adhesion. Cell 91(4):521–530CrossRefPubMedGoogle Scholar
  45. 45.
    Probst HC, Tschannen K, Odermatt B, Schwendener R, Zinkernagel RM, Van Den Broek M (2005) Histological analysis of CD11c-DTR/GFP mice after in vivo depletion of dendritic cells. Clin Exp Immunol 141(3):398–404CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Hebel K, Griewank K, Inamine A, Chang H-D, Müller-Hilke B et al (2006) Plasma cell differentiation in t-independent type 2 immune responses is independent of cd11c (high) dendritic cells. Eur J Immunol 36(11):2912–2919Google Scholar
  47. 47.
    Lucas M, Schachterle W, Oberle K, Aichele P, Diefenbach A (2007) Dendritic cells prime natural killer cells by trans-presenting interleukin 15. Immunity 26(4):503–517CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Brocker T, Riedinger M, Karjalainen K (1997) Targeted expression of major histocompatibility complex MHC class II molecules demonstrates that dendritic cells can induce negative but not positive selection of thymocytes in vivo. J Exp Med 185(3):541–550CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Caterina Curato
    • 1
  • Biana Bernshtein
    • 1
  • Tegest Aychek
    • 1
  • Steffen Jung
    • 1
    Email author
  1. 1.Department of ImmunologyThe Weizmann Institute of ScienceRehovotIsrael

Personalised recommendations