Skip to main content

Characterization of Dendritic Cell Subsets Through Gene Expression Analysis

  • Protocol
  • First Online:
Dendritic Cell Protocols

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1423))

Abstract

Dendritic cells (DCs) are immune sentinels of the body and play a key role in the orchestration of the communication between the innate and the adaptive immune systems. DCs can polarize innate and adaptive immunity toward a variety of functions, sometimes with opposite roles in the overall control of immune responses (e.g., tolerance or immunosuppression versus immunity) or in the balance between various defense mechanisms promoting the control of different types of pathogens (e.g., antiviral versus antibacterial versus anti-worm immunity). These multiple DC functions result both from the plasticity of individual DC to exert different activities and from the existence of various DC subsets specialized in distinct functions. Functional genomics represents a powerful, unbiased, approach to better characterize these two levels of DC plasticity and to decipher its molecular regulation. Indeed, more and more experimental immunologists are generating high-throughput data in order to better characterize different states of DC based, for example, on their belonging to a specific subpopulation and/or on their exposure to specific stimuli and/or on their ability to exert a specific function. However, the interpretation of this wealth of data is severely hampered by the bottleneck of their bioinformatics analysis. Indeed, most experimental immunologists lack advanced computational or bioinformatics expertise and do not know how to translate raw gene expression data into potential biological meaning. Moreover, subcontracting such analyses is generally disappointing or financially not sustainable, since companies generally propose canonical analysis pipelines that are often unadapted for the structure of the data to analyze or for the precise type of questions asked. Hence, there is an important need of democratization of the bioinformatics analyses of gene expression profiling studies, in order to accelerate interpretation of the results by the researchers at the origin of the research project, of the data and who know best the underlying biology. This chapter will focus on the analysis of DC subset transcriptomes as measured by microarrays. We will show that simple bioinformatics procedures, applied one after the other in the framework of a pipeline, can lead to the characterization of DC subsets. We will develop two tutorials based on the reanalysis of public gene expression data. The first tutorial aims at illustrating a strategy for establishing the identity of DC subsets studied in a novel context, here their in vitro generation in cultures of human CD34+ hematopoietic progenitors. The second tutorial aims at illustrating how to perform a posteriori bioinformatics analyses in order to evaluate the risk of contamination or of improper identification of DC subsets during preparation of biological samples, such that this information is taken into account in the final interpretation of the data and can eventually help to redesign the sampling strategy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Pascual V, Chaussabel D, Banchereau J (2010) A genomic approach to human autoimmune diseases. Annu Rev Immunol 28:535–571

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Chaussabel D, Baldwin N (2014) Democratizing systems immunology with modular transcriptional repertoire analyses. Nat Rev Immunol 14(4):271–280

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Pandey G, Cohain A, Miller J, Merad M (2013) Decoding dendritic cell function through module and network analysis. J Immunol Methods 387(1–2):71–80

    Article  CAS  PubMed  Google Scholar 

  4. Mabbott NA, Kenneth Baillie J, Hume DA, Freeman TC (2010) Meta-analysis of lineage-specific gene expression signatures in mouse leukocyte populations. Immunobiology 215(9–10):724–736

    Article  CAS  PubMed  Google Scholar 

  5. Zak DE, Tam VC, Aderem A (2014) Systems-level analysis of innate immunity. Annu Rev Immunol 32:547–577

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Pulendran B, Li S, Nakaya HI (2010) Systems vaccinology. Immunity 33(4):516–529

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Weeraratna AT, Taub DD (2007) Microarray data analysis: an overview of design, methodology, and analysis. Methods Mol Biol 377:1–16

    Article  CAS  PubMed  Google Scholar 

  8. Imbeaud S, Auffray C (2005) ‘The 39 steps’ in gene expression profiling: critical issues and proposed best practices for microarray experiments. Drug Discov Today 10(17):1175–1182

    Article  CAS  PubMed  Google Scholar 

  9. Theocharidis A, van Dongen S, Enright AJ, Freeman TC (2009) Network visualization and analysis of gene expression data using BioLayout Express (3D). Nat Protoc 4(10):1535–1550

    Article  CAS  PubMed  Google Scholar 

  10. Reich M, Liefeld T, Gould J, Lerner J, Tamayo P, Mesirov JP (2006) GenePattern 2.0. Nat Genet 38(5):500–501

    Article  CAS  PubMed  Google Scholar 

  11. da Huang W, Sherman BT, Lempicki RA (2009) Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc 4(1):44–57

    Article  CAS  Google Scholar 

  12. Balan S, Ollion V, Colletti N, Chelbi R, Montanana-Sanchis F, Liu H, Vu Manh TP, Sanchez C, Savoret J, Perrot I, Doffin AC, Fossum E, Bechlian D, Chabannon C, Bogen B, Asselin-Paturel C, Shaw M, Soos T, Caux C, Valladeau-Guilemond J, Dalod M (2014) Human XCR1+ dendritic cells derived in vitro from CD34+ progenitors closely resemble blood dendritic cells, including their adjuvant responsiveness, contrary to monocyte-derived dendritic cells. J Immunol 193(4):1622–1635

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Qiu CH, Miyake Y, Kaise H, Kitamura H, Ohara O, Tanaka M (2009) Novel subset of CD8a + dendritic cells localized in the marginal zone is responsible for tolerance to cell-associated antigens. J Immunol 182(7):4127–4136

    Article  CAS  PubMed  Google Scholar 

  14. Edgar R, Domrachev M, Lash AE (2002) Gene Expression Omnibus: NCBI gene expression and hybridization array data repository. Nucleic Acids Res 30(1):207–210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Brazma A, Parkinson H, Sarkans U, Shojatalab M, Vilo J, Abeygunawardena N, Holloway E, Kapushesky M, Kemmeren P, Lara GG, Oezcimen A, Rocca-Serra P, Sansone SA (2003) ArrayExpress—a public repository for microarray gene expression data at the EBI. Nucleic Acids Res 31(1):68–71

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Hijikata A, Kitamura H, Kimura Y, Yokoyama R, Aiba Y, Bao Y, Fujita S, Hase K, Hori S, Ishii Y, Kanagawa O, Kawamoto H, Kawano K, Koseki H, Kubo M, Kurita-Miki A, Kurosaki T, Masuda K, Nakata M, Oboki K, Ohno H, Okamoto M, Okayama Y, O-Wang J, Saito H, Saito T, Sakuma M, Sato K, Seino K, Setoguchi R, Tamura Y, Tanaka M, Taniguchi M, Taniuchi I, Teng A, Watanabe T, Watarai H, Yamasaki S, Ohara O (2007) Construction of an open-access database that integrates cross-reference information from the transcriptome and proteome of immune cells. Bioinformatics 23(21):2934–2941

    Article  CAS  PubMed  Google Scholar 

  17. Vu Manh TP, Marty H, Sibille P, Le Vern Y, Kaspers B, Dalod M, Schwartz-Cornil I, Quere P (2014) Existence of conventional dendritic cells in Gallus gallus revealed by comparative gene expression profiling. J Immunol 192(10):4510–4517

    Article  CAS  PubMed  Google Scholar 

  18. Saeed AI, Sharov V, White J, Li J, Liang W, Bhagabati N, Braisted J, Klapa M, Currier T, Thiagarajan M, Sturn A, Snuffin M, Rezantsev A, Popov D, Ryltsov A, Kostukovich E, Borisovsky I, Liu Z, Vinsavich A, Trush V, Quackenbush J (2003) TM4: a free, open-source system for microarray data management and analysis. Biotechniques 34(2):374–378

    CAS  PubMed  Google Scholar 

  19. Spinelli L, Carpentier S, Montañana Sanchis F, Dalod M, Vu Manh TP (2015) BubbleGUM: automatic extraction of phenotype molecular signatures and comprehensive visualization of multiple Gene Set Enrichment Analyses. BMC Genomics 16(1):814

    Article  PubMed  PubMed Central  Google Scholar 

  20. Gentleman RC, Carey VJ, Bates DM, Bolstad B, Dettling M, Dudoit S, Ellis B, Gautier L, Ge Y, Gentry J, Hornik K, Hothorn T, Huber W, Iacus S, Irizarry R, Leisch F, Li C, Maechler M, Rossini AJ, Sawitzki G, Smith C, Smyth G, Tierney L, Yang JY, Zhang J (2004) Bioconductor: open software development for computational biology and bioinformatics. Genome Biol 5(10):R80

    Article  PubMed  PubMed Central  Google Scholar 

  21. Bolstad BM, Irizarry RA, Astrand M, Speed TP (2003) A comparison of normalization methods for high density oligonucleotide array data based on variance and bias. Bioinformatics 19(2):185–193

    Article  CAS  PubMed  Google Scholar 

  22. Efron B, Tibshirani R (1991) Statistical data analysis in the computer age. Science 253(5018):390–395

    Article  CAS  PubMed  Google Scholar 

  23. Pearson K (1901) On lines and planes of closest fit to systems of points in space. Philos Mag 2:559–572

    Article  Google Scholar 

  24. Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, Paulovich A, Pomeroy SL, Golub TR, Lander ES, Mesirov JP (2005) Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci U S A 102(43):15545–15550

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Churchill GA (2002) Fundamentals of experimental design for cDNA microarrays. Nat Genet 32(Suppl):490–495

    Article  CAS  PubMed  Google Scholar 

  26. Li C, Wong WH (2001) Model-based analysis of oligonucleotide arrays: expression index computation and outlier detection. Proc Natl Acad Sci U S A 98(1):31–36

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Irizarry RA, Bolstad BM, Collin F, Cope LM, Hobbs B, Speed TP (2003) Summaries of Affymetrix GeneChip probe level data. Nucleic Acids Res 31(4):e15

    Article  PubMed  PubMed Central  Google Scholar 

  28. Amaratunga D, Cabrera J, Shkedy Z (2014) Exploration of analysis of DNA microarray and other high-dimensional data. In: Amaratunga D, Cabrera J, Shkedy Z (eds) Exploration of analysis of DNA microarray and other high-dimensional data, Wiley series in probability and statistics. Wiley, Hoboken, NJ

    Chapter  Google Scholar 

  29. Johnson WE, Li C, Rabinovic A (2007) Adjusting batch effects in microarray expression data using empirical Bayes methods. Biostatistics 8(1):118–127

    Article  PubMed  Google Scholar 

  30. Bezman NA, Kim CC, Sun JC, Min-Oo G, Hendricks DW, Kamimura Y, Best JA, Goldrath AW, Lanier LL (2012) Molecular definition of the identity and activation of natural killer cells. Nat Immunol 13(10):1000–1009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Guilliams M, Henri S, Tamoutounour S, Ardouin L, Schwartz-Cornil I, Dalod M, Malissen B (2010) From skin dendritic cells to a simplified classification of human and mouse dendritic cell subsets. Eur J Immunol 40(8):2089–2094

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The laboratory of Marc Dalod receives funding from the European Research Council under the European Community’s Seventh Framework Programme (FP7/2007–2013 Grant Agreement no. 281225, including salary support for T.-P.V.M.); from the I2HD collaborative project between CIML, AVIESAN, and SANOFI; from Institut National du Cancer (INCa grant #2011-155); from Agence Nationale de la Recherche (project PhyloGenDC, ANR-09-BLAN-0073-02); and from FRM (Equipe labellisée to M.D.), as well as institutional support from Inserm and CNRS. We also acknowledge support from the DCBIOL Labex (ANR-11-LABEX-0043, grant ANR-10-IDEX-0001-02PSL*) and the A*MIDEX project (ANR-11-IDEX-0001-02) funded by the French Government's "Investissements d'Avenir" program managed by the ANR.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thien-Phong Vu Manh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Vu Manh, TP., Dalod, M. (2016). Characterization of Dendritic Cell Subsets Through Gene Expression Analysis. In: Segura, E., Onai, N. (eds) Dendritic Cell Protocols. Methods in Molecular Biology, vol 1423. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3606-9_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3606-9_16

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3604-5

  • Online ISBN: 978-1-4939-3606-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics