Advertisement

Analysis of Intracellular Trafficking of Dendritic Cell Receptors for Antigen Targeting

  • Haiyin Liu
  • Claire Dumont
  • Angus P. R. JohnstonEmail author
  • Justine D. MinternEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1423)

Abstract

Antibody-targeted vaccination aims to efficiently deliver antigen to dendritic cells by targeting specific receptors at the cell surface. The choice of receptor depends on different factors, including their capacity to induce internalization of the delivered antigen/adjuvant cargo. Assays currently used to monitor internalization in dendritic cells have several limitations. We have developed a novel DNA-based probe that allows for simple and robust high-throughput analysis of internalization. Designed for flow cytometry, the probe can also be used for fluorescence microscopy to clearly distinguish internalized from surface-bound material. Here, we describe the steps for modifying material (antibodies, proteins) with the probe, undertaking the assay, and analyzing the data obtained from flow cytometry.

Key words

Dendritic cell Endocytosis Internalization Fluorescence Sensor Flow cytometry Antibodies Binding Receptor 

References

  1. 1.
    Bonifaz LC, Bonnyay DP, Charalambous A et al (2004) In vivo targeting of antigens to maturing dendritic cells via the DEC-205 receptor improves T cell vaccination. J Exp Med 199:815–824CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Caminschi I, Shortman K (2012) Boosting antibody responses by targeting antigens to dendritic cells. Trends Immunol 33:71–77CrossRefPubMedGoogle Scholar
  3. 3.
    Ueno H, Klechevsky E, Schmitt N et al (2011) Targeting human dendritic cell subsets for improved vaccines. Semin Immunol 23:21–27CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Platt CD, Ma JK, Chalouni C et al (2010) Mature dendritic cells use endocytic receptors to capture and present antigens. Proc Natl Acad Sci U S A 107:4287–4292CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Cheong C, Choi J-H, Vitale L et al (2010) Improved cellular and humoral immune responses in vivo following targeting of HIV Gag to dendritic cells within human anti-human DEC205 monoclonal antibody. Blood 116:3828–3838CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Wei H, Wang S, Zhang D et al (2009) Targeted delivery of tumor antigens to activated dendritic cells via CD11c molecules induces potent antitumor immunity in mice. Clin Cancer Res 15:4612–4621CrossRefPubMedGoogle Scholar
  7. 7.
    Caminschi I, Proietto AI, Ahmet F et al (2008) The dendritic cell subtype-restricted C-type lectin Clec9A is a target for vaccine enhancement. Blood 112:3264–3273CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Idoyaga J, Lubkin A, Fiorese C et al (2011) Comparable T helper 1 (Th1) and CD8 T-cell immunity by targeting HIV gag p24 to CD8 dendritic cells within antibodies to Langerin, DEC205, and Clec9A. Proc Natl Acad Sci U S A 108:2384–2389CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Kreutz M, Tacken PJ, Figdor CG (2013) Targeting dendritic cells--why bother? Blood 121:2836–2844CrossRefPubMedGoogle Scholar
  10. 10.
    Kastenmüller W, Kastenmüller K, Kurts C et al (2014) Dendritic cell-targeted vaccines - hope or hype? Nat Rev Immunol 14(10):705–11CrossRefPubMedGoogle Scholar
  11. 11.
    Cohn L, Chatterjee B, Esselborn F et al (2013) Antigen delivery to early endosomes eliminates the superiority of human blood BDCA3+ dendritic cells at cross presentation. J Exp Med 210:1049–1063CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Cruz LJ, Rosalia RA, Kleinovink JW et al (2014) Targeting nanoparticles to CD40, DEC-205 or CD11c molecules on dendritic cells for efficient CD8(+) T cell response: a comparative study. J Control Release 192:209–218CrossRefPubMedGoogle Scholar
  13. 13.
    Göstring L, Chew MT, Orlova A et al (2010) Quantification of internalization of EGFR-binding Affibody molecules: methodological aspects. Int J Oncol 36:757–763CrossRefPubMedGoogle Scholar
  14. 14.
    Naslavsky N, Weigert R, Donaldson JG (2003) Convergence of non-clathrin- and clathrin-derived endosomes involves Arf6 inactivation and changes in phosphoinositides. Mol Biol Cell 14:417–431CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Van Amersfoort ES, Van Strijp JA (1994) Evaluation of a flow cytometric fluorescence quenching assay of phagocytosis of sensitized sheep erythrocytes by polymorphonuclear leukocytes. Cytometry 17:294–301CrossRefPubMedGoogle Scholar
  16. 16.
    Miksa M, Komura H, Wu R et al (2009) A novel method to determine the engulfment of apoptotic cells by macrophages using pHrodo succinimidyl ester. J Immunol Methods 342:71–77CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Liu H, Johnston APR (2013) A programmable sensor to probe the internalization of proteins and nanoparticles in live cells. Angew Chem Int Ed Engl 52:5744–5748CrossRefPubMedGoogle Scholar
  18. 18.
    Shi M, Dennis K, Peschon JJ et al (2001) Antibody-induced shedding of CD44 from adherent cells is linked to the assembly of the cytoskeleton. J Immunol 167:123–131CrossRefPubMedGoogle Scholar
  19. 19.
    Savina A, Peres A, Cebrian I et al (2009) The small GTPase Rac2 controls phagosomal alkalinization and antigen crosspresentation selectively in CD8(+) dendritic cells. Immunity 30:544–555CrossRefPubMedGoogle Scholar
  20. 20.
    Ana-Sosa-Batiz F, Johnston APR, Liu H et al (2014) HIV-specific antibody-dependent phagocytosis matures during HIV infection. Immunol Cell Biol 92:679–687CrossRefPubMedGoogle Scholar
  21. 21.
    Kalkhof S, Sinz A (2008) Chances and pitfalls of chemical cross-linking with amine-reactive N-hydroxysuccinimide esters. Anal Bioanal Chem 392:305–312CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology InstituteThe University of MelbourneParkvilleAustralia
  2. 2.Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical SciencesMonash UniversityParkvilleAustralia
  3. 3.ARC Centre of Excellence in Convergent Bio-Nano Science and TechnologyMonash UniversityParkvilleAustralia

Personalised recommendations