Skip to main content

AOM/DSS Model of Colitis-Associated Cancer

  • Protocol
  • First Online:
Gastrointestinal Physiology and Diseases

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1422))

Abstract

Our understanding of colitis-associated carcinoma (CAC) has benefited substantially from mouse models that faithfully recapitulate human CAC. Chemical models, in particular, have enabled fast and efficient analysis of genetic and environmental modulators of CAC without the added requirement of time-intensive genetic crossings. Here we describe the Azoxymethane (AOM)/Dextran Sodium Sulfate (DSS) mouse model of inflammatory colorectal cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Siegel R, Ma J, Jemal A (2014) Cancer statistics, 2014. CA Cancer J Clin 64:9–29

    Article  PubMed  Google Scholar 

  2. Danese S, Malesci A, Vetrano S (2011) Colitis-associated cancer: the dark side of inflammatory bowel disease. Gut 60:1609–1610

    Article  CAS  PubMed  Google Scholar 

  3. Danese S, Mantovani A (2010) Inflammatory bowel disease and intestinal cancer : a paradigm of the Yin – Yang interplay between inflammation and cancer. Oncogene 29:3313–3323

    Article  CAS  PubMed  Google Scholar 

  4. Terzić J, Grivennikov S, Karin E, Karin M (2010) Inflammation and colon cancer. Gastroenterology 138:2101–2114

    Article  PubMed  Google Scholar 

  5. Eaden JA, Abrams KR, Mayberry JF (2001) The risk of colorectal cancer in ulcerative colitis : a meta analysis. Gut 48:526–535

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Ekbom A, Helmick C, Zack M, Adami H (1990) Ulcerative colitis and colorectal cancer. N Engl J Med 323:1228–1233

    Article  CAS  PubMed  Google Scholar 

  7. Hovde O, Kempski-Monstad I, Småstuen MC, Solberg IC, Henriksen M, Jahnsen J et al (2013) Mortality and causes of death in Crohn’s disease: results from 20 years of follow-up in the IBSEN study. Gut 63:771–775

    Article  PubMed  Google Scholar 

  8. Beaugerie L, Svrcek M, Seksik P, Bouvier AM, Simon T, Allez M et al (2013) Risk of colorectal high-grade dysplasia and cancer in a prospective observational cohort of patients with inflammatory bowel disease. Gastroenterology 145:166–175

    Article  PubMed  Google Scholar 

  9. Gyde SN, Prior P, Allan RN, Stevens A, Jewell DP, Truelove SC et al (1988) Colorectal cancer in ulcerative colitis: a cohort study of primary referrals from three centres. Gut 29:206–217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Lakatos PL, Lakatos L (2008) Risk for colorectal cancer in ulcerative colitis: changes, causes and management strategies. World J Gastroenterol 14:3937–3947

    Article  PubMed  PubMed Central  Google Scholar 

  11. Jess T, Rungoe C, Peyrin-Biroulet L (2012) Risk of colorectal cancer in patients with ulcerative colitis: a meta-analysis of population-based cohort studies. Clin Gastroenterol Hepatol 10:639–645

    Article  PubMed  Google Scholar 

  12. Tanaka T, Kohno H, Suzuki R, Yamada Y, Sugie S, Mori H (2003) A novel inflammation-related mouse colon carcinogenesis model induced by azoxymethane and dextran sodium sulfate. Cancer Sci 94:965–973

    Article  CAS  PubMed  Google Scholar 

  13. De Robertis M, Massi E, Poeta ML, Carotti S, Morini S, Cecchetelli L et al (2011) The AOM/DSS murine model for the study of colon carcinogenesis: from pathways to diagnosis and therapy studies. J Carcinog 10:9

    Article  PubMed  PubMed Central  Google Scholar 

  14. Chen J, Huang XF (2009) The signal pathways in azoxymethane-induced colon cancer and preventive implications. Cancer Biol Ther 14:1313–1317

    Article  Google Scholar 

  15. Suzuki R, Kohno H, Sugie S, Nakagama H, Tanaka T (2006) Strain differences in the susceptibility to azoxymethane and dextran sodium sulfate-induced colon carcinogenesis in mice. Carcinogenesis 1:162–169

    Google Scholar 

  16. Sohn OS, Fiala ES, Requeijo SP (2001) Differential effects of CYP2E1 status on the metabolic activation of the colon carcinogens azoxymethane. Cancer Res 61:8435–8440

    CAS  PubMed  Google Scholar 

  17. Okayasu I, Hatakeyama S, Yamada M, Ohkusa T, Inagaki Y, Nakaya R (1999) A novel method in the induction of reliable experimental acute and chronic colitis in mice. Gastroenterology 98:694–702

    Google Scholar 

  18. Fukata M, Chen A, Vamadevan AS, Cohen J, Breglio K, Krishnareddy S et al (2007) Toll-like receptor-4 promotes the development of colitis-associated colorectal tumors. Gastroenterology 133:1869–1881

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Greten FR, Eckmann L, Greten TF, Park JM, Li ZW, Egan LJ et al (2004) IKKβ links inflammation and tumorigenesis in a mouse model of colitis-associated cancer. Cell 118:285–296

    Article  CAS  PubMed  Google Scholar 

  20. Grivennikov S, Karin E, Terzic J, Mucida D, Yu GY, Vallabhapurapu S et al (2009) IL-6 and Stat3 are required for survival of intestinal epithelial cells and development of colitis-associated cancer. Cancer Cell 15:103–113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Barrett CW, Ning W, Chen X, Smith JJ, Washington MK, Hill KE et al (2012) Tumor suppressor function of the plasma glutathione peroxidase Gpx3 in colitis-associated carcinoma. Cancer Res 73:1245–1255

    Article  PubMed  PubMed Central  Google Scholar 

  22. Uronis JM, Mühlbauer M, Herfarth HH, Rubinas TC, Jones GS, Jobin C (2009) Modulation of the intestinal microbiota alters colitis-associated colorectal cancer susceptibility. PLoS One 4, e6026

    Article  PubMed  PubMed Central  Google Scholar 

  23. Barrett CW, Fingleton B, Williams A, Ning W, Fischer M, Washington MK et al (2011) MTGR1 is required for tumorigenesis in the murine AOM/DSS colitis-associated carcinoma model. Cancer Res 71:1302–1312

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Whitten C, Williams A, Williams CS (2010) Murine colitis modeling using dextran sulfate sodium. J Vis Exp 35:5–8

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Institutes of Health grants DK080221 (C.S.W.), 1F30DK096718-01A1 (B.P.), T32 GM07347 (NIH/NIGMS) (B.P.), Merit Review Grants from the Office of Medical Research, Department of Veterans Affairs 1I01BX001426 (C.S.W.), and ACS-RSG 116552 (C.S.W.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher S. Williams M.D., Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Parang, B., Barrett, C.W., Williams, C.S. (2016). AOM/DSS Model of Colitis-Associated Cancer. In: Ivanov, A. (eds) Gastrointestinal Physiology and Diseases. Methods in Molecular Biology, vol 1422. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3603-8_26

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3603-8_26

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3601-4

  • Online ISBN: 978-1-4939-3603-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics