Skip to main content

CRISPR/Cas9-Mediated Genome Editing of Mouse Small Intestinal Organoids

  • Protocol
  • First Online:
Gastrointestinal Physiology and Diseases

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1422))

Abstract

The CRISPR/Cas9 system is an RNA-guided genome-editing tool that has been recently developed based on the bacterial CRISPR-Cas immune defense system. Due to its versatility and simplicity, it rapidly became the method of choice for genome editing in various biological systems, including mammalian cells. Here we describe a protocol for CRISPR/Cas9-mediated genome editing in murine small intestinal organoids, a culture system in which somatic stem cells are maintained by self-renewal, while giving rise to all major cell types of the intestinal epithelium. This protocol allows the study of gene function in intestinal epithelial homeostasis and pathophysiology and can be extended to epithelial organoids derived from other internal mouse and human organs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bhaya D, Davison M, Barrangou R (2011) CRISPR-Cas systems in bacteria and archaea: versatile small RNAs for adaptive defense and regulation. Annu Rev Genet 45:273–297

    Article  CAS  PubMed  Google Scholar 

  2. Sorek R, Lawrence CM, Wiedenheft B (2013) CRISPR-mediated adaptive immune systems in bacteria and archaea. Annu Rev Biochem 82:237–266

    Article  CAS  PubMed  Google Scholar 

  3. Sander JD, Joung JK (2014) CRISPR-Cas systems for editing, regulating and targeting genomes. Nat Biotechnol 32:347–355

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E (2012) A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337:816–821

    Article  CAS  PubMed  Google Scholar 

  5. Ran FA, Hsu PD, Wright J, Agarwala V, Scott DA, Zhang F (2013) Genome engineering using the CRISPR-Cas9 system. Nat Protoc 8:2281–2308

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Cong L, Ran FA, Cox D, Lin S et al (2013) Multiplex genome engineering using CRISPR/Cas systems. Science 339:819–823

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Mali P, Yang L, Esvelt KM, Aach J, Guell M, DiCarlo JE, Norville JE, Church GM (2013) RNA-guided human genome engineering via Cas9. Science 339:823–826

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Sato T, Vries RG, Snippert HJ, van de Wetering M et al (2009) Single Lgr5 stem cells build crypt-villus structures in vitro without a mesenchymal niche. Nature 459:262–265

    Article  CAS  PubMed  Google Scholar 

  9. Boj SF, Hwang CI, Baker LA, Chio II et al (2015) Organoid models of human and mouse ductal pancreatic cancer. Cell 160:324–338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Huch M, Bonfanti P, Boj SF, Sato T et al (2013) Unlimited in vitro expansion of adult bi-potent pancreas progenitors through the Lgr5/R-spondin axis. EMBO J 32:2708–2721

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Jung P, Sato T, Merlos-Suarez A, Barriga FM et al (2011) Isolation and in vitro expansion of human colonic stem cells. Nat Med 17:1225–1227

    Article  CAS  PubMed  Google Scholar 

  12. Sato T, Stange DE, Ferrante M, Vries RG et al (2011) Long-term expansion of epithelial organoids from human colon, adenoma, adenocarcinoma, and Barrett's epithelium. Gastroenterology 141:1762–1772

    Article  CAS  PubMed  Google Scholar 

  13. Huch M, Gehart H, van Boxtel R, Hamer K et al (2015) Long-term culture of genome-stable bipotent stem cells from adult human liver. Cell 160:299–312

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Drost J, van Jaarsveld RH, Ponsioen B, Zimberlin C et al (2015) Sequential cancer mutations in cultured human intestinal stem cells. Nature 521:43–47

    Article  CAS  PubMed  Google Scholar 

  15. Matano M, Date S, Shimokawa M, Takano A, Fujii M, Ohta Y, Watanabe T, Kanai T, Sato T (2015) Modeling colorectal cancer using CRISPR-Cas9-mediated engineering of human intestinal organoids. Nat Med 21:256–262

    CAS  PubMed  Google Scholar 

  16. Schwank G, Koo BK, Sasselli V, Dekkers JF et al (2013) Functional repair of CFTR by CRISPR/Cas9 in intestinal stem cell organoids of cystic fibrosis patients. Cell Stem Cell 13:653–658

    Article  CAS  PubMed  Google Scholar 

  17. Sato T, Clevers H (2013) Primary mouse small intestinal epithelial cell cultures. Methods Mol Biol 945:319–328

    Article  PubMed  Google Scholar 

  18. D'Astolfo DS, Pagliero RJ, Pras A, Karthaus WR et al (2015) Efficient intracellular delivery of native proteins. Cell 161:674–690

    Article  PubMed  Google Scholar 

  19. Yusa K, Rashid ST, Strick-Marchand H, Varela I et al (2011) Targeted gene correction of alpha1-antitrypsin deficiency in induced pluripotent stem cells. Nature 478:391–394

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Willert K, Brown JD, Danenberg E, Duncan AW, Weissman IL, Reya T, Yates JR III, Nusse R (2003) Wnt proteins are lipid-modified and can act as stem cell growth factors. Nature 423:448–452

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was funded by grants from the European Research Council (EU/232814-StemCeLLMark), the KNAW/3V-fund, the SNF (31003A_160230), and the Human Frontiers in Science Program long-term fellowship LT000422/2012.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Gerald Schwank or Hans Clevers .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Schwank, G., Clevers, H. (2016). CRISPR/Cas9-Mediated Genome Editing of Mouse Small Intestinal Organoids. In: Ivanov, A. (eds) Gastrointestinal Physiology and Diseases. Methods in Molecular Biology, vol 1422. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3603-8_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3603-8_1

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3601-4

  • Online ISBN: 978-1-4939-3603-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics