Electrochemical Detection of Nitric Oxide in Plant Cell Suspensions

Part of the Methods in Molecular Biology book series (MIMB, volume 1424)


Nitric oxide is a hydrophobic radical acting as a physiological mediator in plants. Because of its unique properties, the detection of NO in plant tissues and cell suspensions remains a challenge. For this purpose, several techniques are used, each having certain advantages and limitations such as interferences with other species, questionable sensitivity, and/or selectivity or ex situ measurement. Here we describe a very attractive approach for tracking NO in plant cell suspensions using a NO-sensitive homemade platinum/iridium-based electrochemical microsensor. This method constitutes the absolute real-time proof of the production of free NO in physiological conditions.

Key words

Nitric oxide Plant cell suspensions Electrochemical detection Homemade electrode 



This work was supported by La Région de Bourgogne PARI AGRALE 8 project, the University of Burgundy Bonus Qualité Recherche project, and the ANR PIANO (A.B-B. and D.W.).


  1. 1.
    Foster MW, Stamler JS (2004) New insights into protein S-nitrosylation. Mitochondria as a model system. J Biol Chem 279:25891–25897CrossRefPubMedGoogle Scholar
  2. 2.
    Schmidt HH, Walter U (1994) NO at work. Cell 78:919–925CrossRefPubMedGoogle Scholar
  3. 3.
    Mustafa AK, Gadalla MM, Snyder SH (2009) Signaling by gasotransmitters. Sci Signal 2:re2PubMedPubMedCentralGoogle Scholar
  4. 4.
    Hernansanz-Agustin P, Izquierdo-Alvarez A, Garcia-Ortiz A, Ibiza S, Serrador JM, Martinez-Ruiz A (2013) Nitrosothiols in the immune system: signaling and protection. Antioxid Redox Signal 18:288–308CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Bogdan C (2001) Nitric oxide and the immune response. Nat Immunol 2:907–916CrossRefPubMedGoogle Scholar
  6. 6.
    Delledonne M, Xia Y, Dixon RA, Lamb C (1998) Nitric oxide functions as a signal in plant disease resistance. Nature 394:585–588CrossRefPubMedGoogle Scholar
  7. 7.
    Durner J, Wendehenne D, Klessig DF (1998) Defense gene induction in tobacco by nitric oxide, cyclic GMP, and cyclic ADP-ribose. Proc Natl Acad Sci U S A 95:10328–10333CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Besson-Bard A, Pugin A, Wendehenne D (2008) New insights into nitric oxide signaling in plants. Annu Rev Plant Biol 59:21–39CrossRefPubMedGoogle Scholar
  9. 9.
    Wendehenne D, Gao QM, Kachroo A, Kachroo P (2014) Free radical-mediated systemic immunity in plants. Curr Opin Plant Biol 20:127–134CrossRefPubMedGoogle Scholar
  10. 10.
    Yu M, Lamattina L, Spoel SH, Loake GJ (2014) Nitric oxide function in plant biology: a redox cue in deconvolution. New Phytol 202:1142–1156CrossRefPubMedGoogle Scholar
  11. 11.
    Leitner M, Vandelle E, Gaupels F, Bellin D, Delledonne M (2009) NO signals in the haze: nitric oxide signalling in plant defence. Curr Opin Plant Biol 12:451–458CrossRefPubMedGoogle Scholar
  12. 12.
    Gaupels F, Kuruthukulangarakoola GT, Durner J (2011) Upstream and downstream signals of nitric oxide in pathogen defence. Curr Opin Plant Biol 14:707–714CrossRefPubMedGoogle Scholar
  13. 13.
    Mur LA, Prats E, Pierre S, Hall MA, Hebelstrup KH (2013) Integrating nitric oxide into salicylic acid and jasmonic acid/ ethylene plant defense pathways. Front Plant Sci 4:215PubMedPubMedCentralGoogle Scholar
  14. 14.
    Jeandroz S, Lamotte O, Astier J, Rasul S, Trapet P, Besson-Bard A, Bourque S, Nicolas-Frances V, Ma W, Berkowitz GA, Wendehenne D (2013) There’s more to the picture than meets the eye: nitric oxide cross talk with Ca2+ signaling. Plant Physiol 163:459–470CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Besson-Bard A, Astier J, Rasul S, Wawer I, Dubreuil-Maurizi C, Jeandroz S, Wendehenne D (2009) Current view of nitric oxide-responsive genes in plants. Plant Sci 177:302–309CrossRefGoogle Scholar
  16. 16.
    Astier J, Kulik A, Koen E, Besson-Bard A, Bourque S, Jeandroz S, Lamotte O, Wendehenne D (2012) Protein S-nitrosylation: what’s going on in plants? Free Radic Biol Med 53:1101–1110CrossRefPubMedGoogle Scholar
  17. 17.
    Lamotte O, Bertoldo JB, Besson-Bard A, Rosnoblet C, Aime S, Hichami S, Terenzi H, Wendehenne D (2015) Protein S-nitrosylation: specificity and identification strategies in plants. Front Chem 2:114CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Skelly MJ, Loake GJ (2013) Synthesis of redox-active molecules and their signaling functions during the expression of plant disease resistance. Antioxid Redox Signal 19:990–997CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Corpas FJ, Chaki M, Leterrier M, Barroso JB (2009) Protein tyrosine nitration: a new challenge in plants. Plant Signal Behav 4:920–923CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Vandelle E, Delledonne M (2011) Peroxynitrite formation and function in plants. Plant Sci 181:534–539CrossRefPubMedGoogle Scholar
  21. 21.
    Nelson RS, Ryan SA, Harper JE (1983) Soybean mutants lacking constitutive nitrate reductase activity: I. Selection and initial plant characterization. Plant Physiol 72:503–509CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Klepper L (1990) Comparison between NO(x) evolution mechanisms of wild-type and nr(1) mutant soybean leaves. Plant Physiol 93:26–32CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Gupta KJ, Fernie AR, Kaiser WM, van Dongen JT (2011) On the origins of nitric oxide. Trends Plant Sci 16:160–168CrossRefPubMedGoogle Scholar
  24. 24.
    Yamasaki H, Sakihama Y (2000) Simultaneous production of nitric oxide and peroxynitrite by plant nitrate reductase: in vitro evidence for the NR-dependent formation of active nitrogen species. FEBS Lett 468:89–92CrossRefPubMedGoogle Scholar
  25. 25.
    Rockel P, Strube F, Rockel A, Wildt J, Kaiser WM (2002) Regulation of nitric oxide (NO) production by plant nitrate reductase in vivo and in vitro. J Exp Bot 53:103–110CrossRefPubMedGoogle Scholar
  26. 26.
    Horchani F, Prevot M, Boscari A, Evangelisti E, Meilhoc E, Bruand C, Raymond P, Boncompagni E, Aschi-Smiti S, Puppo A, Brouquisse R (2011) Both plant and bacterial nitrate reductases contribute to nitric oxide production in Medicago truncatula nitrogen-fixing nodules. Plant Physiol 155:1023–1036CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Desikan R, Griffiths R, Hancock J, Neill S (2002) A new role for an old enzyme: nitrate reductase-mediated nitric oxide generation is required for abscisic acid-induced stomatal closure in Arabidopsis thaliana. Proc Natl Acad Sci U S A 99:16314–16318CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Chen J, Vandelle E, Bellin D, Delledonne M (2014) Detection and function of nitric oxide during the hypersensitive response in Arabidopsis thaliana: where there’s a will there’s a way. Nitric Oxide 43:81–88CrossRefPubMedGoogle Scholar
  29. 29.
    Rasul S, Dubreuil-Maurizi C, Lamotte O, Koen E, Poinssot B, Alcaraz G, Wendehenne D, Jeandroz S (2012) Nitric oxide production mediates oligogalacturonide-triggered immunity and resistance to Botrytis cinerea in Arabidopsis thaliana. Plant Cell Environ 35:1483–1499CrossRefPubMedGoogle Scholar
  30. 30.
    Tun NN, Santa-Catarina C, Begum T, Silveira V, Handro W, Floh EI, Scherer GF (2006) Polyamines induce rapid biosynthesis of nitric oxide (NO) in Arabidopsis thaliana seedlings. Plant Cell Physiol 47:346–354CrossRefPubMedGoogle Scholar
  31. 31.
    Yang B, Wu J, Gao F, Wang J, Su G (2014) Polyamine-induced nitric oxide generation and its potential requirement for peroxide in suspension cells of soybean cotyledon node callus. Plant Physiol Biochem 79:41–47CrossRefPubMedGoogle Scholar
  32. 32.
    Rumer S, Gupta KJ, Kaiser WM (2009) Plant cells oxidize hydroxylamines to NO. J Exp Bot 60:2065–2072CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Crawford NM, Guo F-Q (2005) New insights into nitric oxide metabolism and regulatory functions. Trends Plant Sci 10:195–200CrossRefPubMedGoogle Scholar
  34. 34.
    Corpas FJ, Palma JM, Del Río LA, Barroso JB (2009) Evidence supporting the existence of l-arginine-dependent nitric oxide synthase activity in plants. New Phytol 184:9–14CrossRefPubMedGoogle Scholar
  35. 35.
    Butt Y, Lum J, Lo S (2003) Proteomic identification of plant proteins probed by mammalian nitric oxide synthase antibodies. Planta 216:762–771PubMedGoogle Scholar
  36. 36.
    Frohlich A, Durner J (2011) The hunt for plant nitric oxide synthase (NOS): is one really needed? Plant Sci 181:401–404CrossRefPubMedGoogle Scholar
  37. 37.
    Tischner R, Galli M, Heimer YM, Bielefeld S, Okamoto M, Mack A, Crawford NM (2007) Interference with the citrulline-based nitric oxide synthase assay by argininosuccinate lyase activity in Arabidopsis extracts. FEBS J 274:4238–4245CrossRefPubMedGoogle Scholar
  38. 38.
    Csonka C, Páli T, Bencsik P, Görbe A, Ferdinandy P, Csont T (2015) Measurement of NO in biological samples. Br J Pharmacol 172:1620–1632CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Hetrick EM, Schoenfisch MH (2009) Analytical chemistry of nitric oxide. Annu Rev Anal Chem 2:409–433CrossRefGoogle Scholar
  40. 40.
    Stamler JS, Singel DJ, Loscalzo J (1992) Biochemistry of nitric oxide and its redox-activated forms. Science 258:1898–1902CrossRefPubMedGoogle Scholar
  41. 41.
    Hess DT, Matsumoto A, Kim SO, Marshall HE, Stamler JS (2005) Protein S-nitrosylation: purview and parameters. Nat Rev Mol Cell Biol 6:150–166CrossRefPubMedGoogle Scholar
  42. 42.
    Mur LA, Mandon J, Cristescu SM, Harren FJ, Prats E (2011) Methods of nitric oxide detection in plants: a commentary. Plant Sci 181:509–519CrossRefPubMedGoogle Scholar
  43. 43.
    Vandelle E, Delledonne M (2008) Methods for nitric oxide detection during plant-pathogen interactions. Methods Enzymol 437:575–594CrossRefPubMedGoogle Scholar
  44. 44.
    Lim MH, Xu D, Lippard SJ (2006) Visualization of nitric oxide in living cells by a copper-based fluorescent probe. Nat Chem Biol 2:375–380CrossRefPubMedGoogle Scholar
  45. 45.
    Kulik A, Noirot E, Grandperret V, Bourque S, Fromentin J, Salloignon P, Truntzer C, Dobrowolska G, Simon-Plas F, Wendehenne D (2015) Interplays between nitric oxide and reactive oxygen species in cryptogein signalling. Plant Cell Environ 38:331–348CrossRefPubMedGoogle Scholar
  46. 46.
    Griveau S, Bedioui F (2013) Overview of significant examples of electrochemical sensor arrays designed for detection of nitric oxide and relevant species in a biological environment. Anal Bioanal Chem 405:3475–3488CrossRefPubMedGoogle Scholar
  47. 47.
    Griveau S, Dumézy C, Séguin J, Chabot GG, Scherman D, Bedioui F (2006) In vivo electrochemical detection of nitric oxide in tumor-bearing mice. Anal Chem 79:1030–1033CrossRefGoogle Scholar
  48. 48.
    Ciszewski A, Milczarek G (2003) Electrochemical detection of nitric oxide using polymer modified electrodes. Talanta 61:11–26CrossRefPubMedGoogle Scholar
  49. 49.
    Privett BJ, Shin JH, Schoenfisch MH (2010) Electrochemical nitric oxide sensors for physiological measurements. Chem Soc Rev 39:1925–1935CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Bedioui F, Villeneuve N (2003) Electrochemical nitric oxide sensors for biological samples – principle, selected examples and applications. Electroanalysis 15:5–18CrossRefGoogle Scholar
  51. 51.
    Murray RW (1992) Molecular design of electrode surfaces. Wiley, New York, NYGoogle Scholar
  52. 52.
    Gilmartin MA, Hart JP (1995) Sensing with chemically and biologically modified carbon electrodes. A review. Analyst 120:1029–1045CrossRefPubMedGoogle Scholar
  53. 53.
    Bakker E, Telting-Diaz M (2002) Electrochemical sensors. Anal Chem 74:2781–2800CrossRefPubMedGoogle Scholar
  54. 54.
    Shibuki K (1990) An electrochemical microprobe for detecting nitric oxide release in brain tissue. Neurosci Res 9:69–76CrossRefPubMedGoogle Scholar
  55. 55.
    Bedioui F, Quinton D, Griveau S, Nyokong T (2010) Designing molecular materials and strategies for the electrochemical detection of nitric oxide, superoxide and peroxynitrite in biological systems. Phys Chem Chem Phys 12:9976–9988CrossRefPubMedGoogle Scholar
  56. 56.
    Bedioui F, Griveau S (2013) Electrochemical detection of nitric oxide: assessment of twenty years of strategies. Electroanalysis 25:587–600CrossRefGoogle Scholar
  57. 57.
    Besson-Bard A, Griveau S, Bedioui F, Wendehenne D (2008) Real-time electrochemical detection of extracellular nitric oxide in tobacco cells exposed to cryptogein, an elicitor of defence responses. J Exp Bot 59:3407–3414CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Lamotte O, Gould K, Lecourieux D, Sequeira-Legrand A, Lebrun-Garcia A, Durner J, Pugin A, Wendehenne D (2004) Analysis of nitric oxide signaling functions in tobacco cells challenged by the elicitor cryptogein. Plant Physiol 135:516–529CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Foissner I, Wendehenne D, Langebartels C, Durner J (2000) In vivo imaging of an elicitor-induced nitric oxide burst in tobacco. Plant J 23:817–824CrossRefPubMedGoogle Scholar
  60. 60.
    Vitecek J, Reinohl V, Jones RL (2008) Measuring NO production by plant tissues and suspension cultured cells. Mol Plant 1:270–284CrossRefPubMedGoogle Scholar
  61. 61.
    Chandler MT, Marsac NTD, Kouchkovsky YD (1972) Photosynthetic growth of tobacco cells in liquid suspension. Can J Bot 50:2265–2270CrossRefGoogle Scholar
  62. 62.
    Bourque S, Dutartre A, Hammoudi V, Blanc S, Dahan J, Jeandroz S, Pichereaux C, Rossignol M, Wendehenne D (2011) Type-2 histone deacetylases as new regulators of elicitor-induced cell death in plants. New Phytol 192:127–139CrossRefPubMedGoogle Scholar
  63. 63.
    Trévin S, Bedioui F, Devynck J (1996) New electropolymerized nickel porphyrin films. Application to the detection of nitric oxide in aqueous solution. J Electroanal Chem 408:261–265CrossRefGoogle Scholar
  64. 64.
    Wendehenne D, Lamotte O, Frachisse JM, Barbier-Brygoo H, Pugin A (2002) Nitrate efflux is an essential component of the cryptogein signaling pathway leading to defense responses and hypersensitive cell death in tobacco. Plant Cell 14:1937–1951CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Wendehenne D, Binet MN, Blein JP, Ricci P, Pugin A (1995) Evidence for specific, high-affinity binding sites for a proteinaceous elicitor in tobacco plasma membrane. FEBS Lett 374:203–207CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Unité de Technologies Chimiques et Biologiques pour la Santé, Chimie ParisTechPSL Research UniversityParisFrance
  2. 2.Unité de Technologies Chimiques et Biologiques pour la Santé UMR 8258CNRSParisFrance
  3. 3.Unité de Technologies Chimiques et Biologiques pour la SantéUniversité Paris DescartesParisFrance
  4. 4.Unité de Technologies Chimiques et Biologiques pour la Santé (N°1022)INSERMParisFrance
  5. 5.Université de Bourgogne, UMR 1347 AgroécologieDijonFrance
  6. 6.ERL CNRS 6300DijonFrance

Personalised recommendations