Advertisement

Laser-Based Methods for Detection of Nitric Oxide in Plants

Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1424)

Abstract

Nitric oxide (NO) plays an important role in plant signaling and in response to various stress conditions. Therefore, real-time measurements of NO production provide better insights into understanding plant processes and can help developing strategies to improve food production and postharvest quality. Using laser-based spectroscopic methods, sensitive, online, in planta measurements of plant-pathogen interactions are possible. This chapter introduces the basic principle of the optical detectors using different laser sources for accurate monitoring of fast dynamic changes of NO production. Several applications are also presented to demonstrate the suitability of these detectors for detection of NO in plants.

Key words

Laser Optical detection Nitric oxide Plant-pathogen interaction 

References

  1. 1.
    Wink DA, Grisham MB, Mitchell JB et al (1996) Direct and indirect effects of nitric oxide in chemical reactions relevant to biology. Methods Enzymol 268:12–31CrossRefPubMedGoogle Scholar
  2. 2.
    Gow AJ, Ischiropoulos H (2001) Nitric oxide chemistry and cellular signaling. J Cell Physiol 187(3):277–282CrossRefPubMedGoogle Scholar
  3. 3.
    Domingos P, Prado AM, Wong A et al (2015) Nitric oxide: a multitasked signaling gas in plants. Mol Plant 8(4):506–520. doi: 10.1016/j.molp.2014.12.010 CrossRefPubMedGoogle Scholar
  4. 4.
    Mur LAJ, Mandon J, Persijn S et al (2013) Nitric oxide in plants: an assessment of the current state of knowledge. AoB Plants. doi: 10.1093/aobpla/pls052 PubMedPubMedCentralGoogle Scholar
  5. 5.
    Scheler C, Durner J, Astier J (2013) Nitric oxide and reactive oxygen species in plant biotic interactions. Curr Opin Plant Biol 16(4):534–539CrossRefPubMedGoogle Scholar
  6. 6.
    Trapet P, Kulik A, Lamotte O et al (2015) NO signaling in plant immunity: a tale of messengers. Phytochemistry 112:72–79CrossRefPubMedGoogle Scholar
  7. 7.
    Hufton CA, Besford RT, Wellburn AR (1996) Effects of NO (+NO2) pollution on growth, nitrate reductase activities and associated protein contents in glasshouse lettuce grown hydroponically in winter with CO2 enrichment. New Phytol 133(3):495–501CrossRefGoogle Scholar
  8. 8.
    Beligni MV, Lamattina L (2000) Nitric oxide stimulates seed germination and de-etiolation, and inhibits hypocotyl elongation, three light-inducible responses in plants. Planta 210(2):215–221CrossRefPubMedGoogle Scholar
  9. 9.
    Leshem YY, Wills RBH (1998) Harnessing senescence delaying gases nitric oxide and nitrous oxide: a novel approach to postharvest control of fresh horticultural produce. Biol Plant 41(1):1–10CrossRefGoogle Scholar
  10. 10.
    Mur LAJ, Mandon J, Cristescu SM et al (2011) Methods of nitric oxide detection in plants: a commentary. Plant Sci 181(5):509–519CrossRefPubMedGoogle Scholar
  11. 11.
    Patel CKN (1966) Vibrational-rotational laser action in carbon monoxide. Phys Rev 141(1):71–83CrossRefGoogle Scholar
  12. 12.
    Osgood RM, Eppers WC (1968) High power Co-N2-He laser. Appl Phys Lett 13(12):409–411CrossRefGoogle Scholar
  13. 13.
    Harris SE (1969) Tunable optical parametric oscillators. Proc IEEE 57(12):2096–2113CrossRefGoogle Scholar
  14. 14.
    Giordmai JA, Miller RC (1965) Tunable coherent parametric oscillation in Linbo3 at optical frequencies. Phys Rev Lett 14(24):973–976CrossRefGoogle Scholar
  15. 15.
    Baxter GW, Payne MA, Austin BDW et al (2000) Spectroscopic diagnostics of chemical processes: applications of tunable optical parametric oscillators. Appl Phys B 71(5):651–663CrossRefGoogle Scholar
  16. 16.
    Partin DL (1985) Lead salt quantum well diode-lasers. Superlattice Microst 1(2):131–135CrossRefGoogle Scholar
  17. 17.
    Tacke M (1995) New developments and application of tunable Ir lead salt lasers. Infrared Phys Technol 36(1):447–463CrossRefGoogle Scholar
  18. 18.
    Clemitshaw KC (2004) A review of instrumentation and measurement techniques for ground-based and airborne field studies of gas-phase tropospheric chemistry. Crit Rev Env Sci Technol 34(1):1–108CrossRefGoogle Scholar
  19. 19.
    Parrish DD, Fehsenfeld FC (2000) Methods for gas-phase measurements of ozone, ozone precursors and aerosol precursors. Atmos Environ 34(12-14):1921–1957CrossRefGoogle Scholar
  20. 20.
    Kondo Y, Kawakami S, Koike M et al (1997) Performance of an aircraft instrument for the measurement of NOy. J Geophys Res Atmos 102(D23):28663–28671CrossRefGoogle Scholar
  21. 21.
    Rockel P, Strube F, Rockel A et al (2002) Regulation of nitric oxide (NO) production by plant nitrate reductase in vivo and in vitro. J Exp Bot 53(366):103–110CrossRefPubMedGoogle Scholar
  22. 22.
    Planchet E, Kaiser WM (2006) Nitric oxide (NO) detection by DAF fluorescence and chemiluminescence: a comparison using abiotic and biotic NO sources. J Exp Bot 57(12):3043–3055CrossRefPubMedGoogle Scholar
  23. 23.
    Cristescu SM, Persijn ST, Hekkert STL et al (2008) Laser-based systems for trace gas detection in life sciences. Appl Phys B 92(3):343–349CrossRefGoogle Scholar
  24. 24.
    Gustafsson LE, Leone AM, Persson MG et al (1991) Endogenous nitric-oxide is present in the exhaled air of rabbits, guinea-pigs and humans. Biochem Biophys Res Commun 181(2):852–857CrossRefPubMedGoogle Scholar
  25. 25.
    Kharitonov SA, Yates D, Robbins RA et al (1994) Increased nitric-oxide in exhaled air of asthmatic-patients. Lancet 343(8890):133–135CrossRefPubMedGoogle Scholar
  26. 26.
    Buchvald F, Baraidi E, Carraro S et al (2005) Measurements of exhaled nitric oxide in healthy subjects age 4 to 17 years. J Allergy Clin Immun 115(6):1130–1136CrossRefPubMedGoogle Scholar
  27. 27.
    Ludviksdottir D, Janson C, Hogman M et al (1999) Exhaled nitric oxide and its relationship to airway responsiveness and atopy in asthma. Respir Med 93(8):552–556CrossRefPubMedGoogle Scholar
  28. 28.
    Faist J, Capasso F, Sivco DL et al (1994) Quantum cascade laser. Science 264(5158):553–556CrossRefPubMedGoogle Scholar
  29. 29.
    Bernegger S, Sigrist MW (1990) Co-laser photoacoustic spectroscopy of gases and vapours for trace gas analysis. Infrared Phys 30(5):375–429CrossRefGoogle Scholar
  30. 30.
    Mur LAJ, Santosa IE, Laarhoven LJJ et al (2005) Laser photoacoustic detection allows in planta detection of nitric oxide in tobacco following challenge with avirulent and virulent Pseudomonas syringae pathovars. Plant Physiol 138(3):1247–1258CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Bijnen FGC, Harren FJM, Hackstein JHP et al (1996) Intracavity CO laser photoacoustic trace gas detection: cyclic CH4, H2O and CO2 emission by cockroaches and scarab beetles. Appl Opt 35(27):5357–5368CrossRefPubMedGoogle Scholar
  32. 32.
    Zuckermann H, Harren FJM, Reuss J et al (1997) Dynamics of acetaldehyde production during anoxia and post-anoxia in red bell pepper studied by photoacoustic techniques. Plant Physiol 113(3):925–932PubMedPubMedCentralGoogle Scholar
  33. 33.
    Martis AAE, Buscher S, Kuhnemann F et al (1998) Simultaneous ethane and ethylene detection using a co-overtone laser photoacoustic spectrometer: a new tool for stress/damage studies in plant physiology. Instrum Sci Technol 26(2-3):177–187CrossRefGoogle Scholar
  34. 34.
    Dahnke H, Kahl J, Schuler G et al (2000) On-line monitoring of biogenic isoprene emissions using photoacoustic spectroscopy. Appl Phys B 70(2):275–280CrossRefGoogle Scholar
  35. 35.
    Persijn ST, Veltman RH, Oomens J et al (2000) CO laser absorption coefficients for gases of biological relevance: H2O, CO2, ethanol, acetaldehyde, and ethylene. Appl Spectrosc 54(1):62–71CrossRefGoogle Scholar
  36. 36.
    Wang Y, Nikodem M, Zhang E et al (2015) Shot-noise limited Faraday rotation spectroscopy for detection of nitric oxide isotopes in breath, urine, and blood. Sci Rep 5:9096CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Menzel L, Kosterev AA, Curl RF et al (2001) Spectroscopic detection of biological NO with a quantum cascade laser. Appl Phys B 72(7):859–863CrossRefPubMedGoogle Scholar
  38. 38.
    Nelson DD, Shorter JH, McManus JB et al (2002) Sub-part-per-billion detection of nitric oxide in air using a thermoelectrically cooled mid-infrared quantum cascade laser spectrometer. Appl Phys B 75(2–3):343–350CrossRefGoogle Scholar
  39. 39.
    Moeskops BWM, Cristescu SM, Harren FJM (2006) Sub-part-per-billion monitoring of nitric oxide by use of wavelength modulation spectroscopy in combination with a thermoelectrically cooled, continuous-wave quantum cascade laser. Opt Lett 31(6):823–825CrossRefPubMedGoogle Scholar
  40. 40.
    McManus JB, Shorter JH, Nelson DD et al (2008) Pulsed quantum cascade laser instrument with compact design for rapid, high sensitivity measurements of trace gases in air. Appl Phys B 92(3):387–392CrossRefGoogle Scholar
  41. 41.
    Kosterev AA, Malinovsky AL, Tittel FK et al (2001) Cavity ringdown spectroscopic detection of nitric oxide with a continuous-wave quantum-cascade laser. Appl Opt 40(30):5522–5529CrossRefPubMedGoogle Scholar
  42. 42.
    Bakhirkin YA, Kosterev AA, Roller C et al (2004) Mid-infrared quantum cascade laser based off-axis integrated cavity output spectroscopy for biogenic nitric oxide detection. Appl Opt 43(11):2257–2266CrossRefPubMedGoogle Scholar
  43. 43.
    Silva ML, Sonnenfroh DM, Rosen DI et al (2005) Integrated cavity output spectroscopy measurements of NO levels in breath with a pulsed room-temperature QCL. Appl Phys B 81(5):705–710CrossRefGoogle Scholar
  44. 44.
    McCurdy MR, Bakhirkin Y, Wysocki G et al (2007) Performance of an exhaled nitric oxide and carbon dioxide sensor using quantum cascade laser-based integrated cavity output spectroscopy. J Biomed Opt 12(3):034034CrossRefPubMedGoogle Scholar
  45. 45.
    Ganser H, Urban W, Brown AM (2003) The sensitive detection of NO by Faraday modulation spectroscopy with a quantum cascade laser. Mol Phys 101(4–5):545–550CrossRefGoogle Scholar
  46. 46.
    Lewicki R, Doty JH, Curl RF et al (2009) Ultrasensitive detection of nitric oxide at 5.33 mu m by using external cavity quantum cascade laser-based Faraday rotation spectroscopy. Proc Natl Acad Sci U S A 106(31):12587–12592CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Kluczynski P, Lundqvist S, Westberg J et al (2011) Faraday rotation spectrometer with sub-second response time for detection of nitric oxide using a cw DFB quantum cascade laser at 5.33 mu m. Appl Phys B 103(2):451–459CrossRefGoogle Scholar
  48. 48.
    Ganser H, Horstjann M, Suschek CV et al (2004) Online monitoring of biogenic nitric oxide with a QC laser-based Faraday modulation technique. Appl Phys B 78(3–4):513–517CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Department of Molecular and Laser PhysicsRadboud University NijmegenNijmegenThe Netherlands
  2. 2.Institute of Biological, Environmental and Rural SciencesAberystwyth UniversityWalesUK

Personalised recommendations