Skip to main content

Informational Suppression to Probe RNA:RNA Interactions in the Context of Ribonucleoproteins: U1 and 5′ Splice-Site Base-Pairing

  • Protocol
  • First Online:
Book cover RNA-Protein Complexes and Interactions

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1421))

Abstract

Informational suppression is a method to map specific RNA:RNA interactions by taking advantage of the rules of base complementarity. First, a predicted Watson-Crick base pair is broken by single-nucleotide substitution which disrupts the RNA’s structure and/or function. Second, the base pair is restored by mutating the opposing nucleotide, thereby rescuing structure and/or function. This method applies to RNP:RNA interactions such as 5′ splice-site (5′ss) base-pairing to the 5′ end of U1 small nuclear RNA as part of a small nuclear RNP. Our protocol aims to determine the 5′ss:U1 base-pairing register for natural 5′ss, because for distinct 5′ss sequences the nucleotides on each strand can be aligned differently. This methodology includes cloning of a wild-type splicing minigene and introduction of 5′ss variants by PCR mutagenesis. A U1-expression plasmid is mutated to construct “suppressor U1” snRNAs with restored base-pairing to mutant 5′ss in different registers. Cells are transfected with combinations of minigenes and suppressor U1s, and the splicing patterns are analyzed by reverse transcription and semiquantitative PCR, followed by gel electrophoresis. The identity of suppressor U1s that rescue splicing for specific mutations indicates the register used in that 5′ss. We also provide tips to adapt this protocol to other minigenes or registers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Woolford JL Jr, Baserga SJ (2013) Ribosome biogenesis in the yeast Saccharomyces cerevisiae. Genetics 195:643–681

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Fischer U, Englbrecht C, Chari A (2011) Biogenesis of spliceosomal small nuclear ribonucleoproteins. Wiley Interdiscip Rev RNA 2:718–731

    Article  CAS  PubMed  Google Scholar 

  3. Brow DA (2002) Allosteric cascade of spliceosome activation. Annu Rev Genet 36:333–360

    Article  CAS  PubMed  Google Scholar 

  4. Wahl MC, Will CL, Lührmann R (2009) The spliceosome: design principles of a dynamic RNP machine. Cell 136:701–718

    Article  CAS  PubMed  Google Scholar 

  5. Roca X, Krainer AR, Eperon IC (2013) Pick one, but be quick: 5′ splice sites and the problems of too many choices. Genes Dev 27:129–144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Sheth N, Roca X, Hastings ML et al (2006) Comprehensive splice-site analysis using comparative genomics. Nucleic Acids Res 34:3955–3967

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Heinrichs V, Bach M, Winkelmann G et al (1990) U1-specific protein C needed for efficient complex formation of U1 snRNP with a 5′ splice site. Science 247:69–72

    Article  CAS  PubMed  Google Scholar 

  8. Kondo Y, Oubridge C, van Roon AM et al (2015) Crystal structure of human U1 snRNP, a small nuclear ribonucleoprotein particle, reveals the mechanism of 5′ splice site recognition. Elife 4

    Google Scholar 

  9. Murgola EJ (1985) tRNA, suppression and the code. Annu Rev Genet 19:57–80

    Article  CAS  PubMed  Google Scholar 

  10. Prelich G (1999) Suppression mechanisms: themes from variations. Trends Genet 15:261–266

    Article  CAS  PubMed  Google Scholar 

  11. Mount SM, Anderson P (2000) Expanding the definition of informational suppression. Trends Genet 16:157

    Article  CAS  PubMed  Google Scholar 

  12. Zhuang Y, Weiner AM (1986) A compensatory base change in U1 snRNA suppresses a 5′ splice site mutation. Cell 46:827–835

    Article  CAS  PubMed  Google Scholar 

  13. Séraphin B, Kretzner L, Rosbash MH (1988) A U1 snRNA:premRNA base pairing interaction is required early in yeast spliceosome assembly but does not uniquely define the 5′ cleavage site. EMBO J 7:2533–2538

    PubMed  PubMed Central  Google Scholar 

  14. Siliciano PG, Guthrie C (1988) 5′ splice site selection in yeast: genetic alterations in base-pairing with U1 reveal additional requirements. Genes Dev 2:1258–1267

    Article  CAS  PubMed  Google Scholar 

  15. Carmel I, Tal S, Vig I et al (2004) Comparative analysis detects dependencies among the 5′ splice-site positions. RNA 10:828–840

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Cohen JB, Snow JE, Spencer SD et al (1994) Suppression of mammalian 5′ splice-site defects by U1 small nuclear RNAs from a distance. Proc Natl Acad Sci U S A 91:10470–10474

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Lo PC, Roy D, Mount SM (1994) Suppressor U1 snRNAs in Drosophila. Genetics 138:365–378

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Pinotti M, Bernardi F, Dal Mas A et al (2011) RNA-based therapeutic approaches for coagulation factor deficiencies. J Thromb Haemost 9:2143–2152

    Article  CAS  PubMed  Google Scholar 

  19. Kandels-Lewis S, Séraphin B (1993) Involvement of U6 snRNA in 5′ splice site selection. Science 262:2035–2039

    Article  CAS  PubMed  Google Scholar 

  20. Lesser CF, Guthrie C (1993) Mutations in U6 snRNA that alter splice site specificity: Implications for the active site. Science 6:1982–1988

    Article  Google Scholar 

  21. Wassarman DA, Steitz JA (1992) Interactions of small nuclear RNA’s with precursor messenger RNA during in vitro splicing. Science 257:1918–1925

    Article  CAS  PubMed  Google Scholar 

  22. Hwang DY, Cohen JB (1996) U1 snRNA promotes the selection of nearby 5′ splice sites by U6 snRNA in mammalian cells. Genes Dev 10:338–350

    Article  CAS  PubMed  Google Scholar 

  23. Roca X, Krainer AR (2009) Recognition of atypical 5′ splice sites by shifted base-pairing to U1 snRNA. Nat Struct Mol Biol 16:176–182

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Roca X, Akerman M, Gaus H et al (2012) Widespread recognition of 5′ splice sites by noncanonical base-pairing to U1 snRNA involving bulged nucleotides. Genes Dev 26:1098–1109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Murphy JT, Skuzeski JT, Lund E et al (1987) Functional elements of the human U1 RNA promoter. Identification of five separate regions required for efficient transcription and template competition. J Biol Chem 262:1795–1803

    CAS  PubMed  Google Scholar 

  26. Markham NR, Zuker M (2008) UNAFold: software for nucleic acid folding and hybridization. Methods Mol Biol 453:3–31

    Article  CAS  PubMed  Google Scholar 

  27. Flicek P, Amode MR, Barrell D et al (2014) Ensembl 2014. Nucleic Acids Res 42:D749–D755

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Lorson CL, Hahnen E, Androphy EJ et al (1999) A single nucleotide in the SMN gene regulates splicing and is responsible for spinal muscular atrophy. Proc Natl Acad Sci U S A 96:6307–6311

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Will CL, Rümpler S, Klein Gunnewiek J et al (1996) In vitro reconstitution of mammalian U1 snRNPs active in splicing: the U1-C protein enhances the formation of early (E) spliceosomal complexes. Nucleic Acids Res 24:4614–4623

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Roca X, Olson AJ, Rao AR et al (2008) Features of 5′-splice-site efficiency derived from disease-causing mutations and comparative genomics. Genome Res 18:77–87

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Baserga SJ, Steitz JA (1993) In: Gesteland RF, Atkins JF (eds) The RNA world. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, p 359–381

    Google Scholar 

  32. Sharma S, Wongpalee SP, Vashisht A et al (2014) Stem-loop 4 of U1 snRNA is essential for splicing and interacts with the U2 snRNP-specific SF3A1 protein during spliceosome assembly. Genes Dev 28:2518–2531

    Article  PubMed  PubMed Central  Google Scholar 

  33. Cartegni L, Hastings ML, Calarco JA et al (2006) Determinants of exon 7 splicing in the spinal muscular atrophy genes, SMN1 and SMN2. Am J Hum Genet 78:63–77

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

XR acknowledges funding from Academic Research Fund Tier 1 grant (RG 20/11) from Singapore’s Ministry of Education, as well as a Startup Grant from School of Biological Sciences at Nanyang Technological University, Singapore. The authors thank Ms Jia Xin Jessie Ho for details of some protocols.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xavier Roca .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Tan, J., Roca, X. (2016). Informational Suppression to Probe RNA:RNA Interactions in the Context of Ribonucleoproteins: U1 and 5′ Splice-Site Base-Pairing. In: Lin, RJ. (eds) RNA-Protein Complexes and Interactions. Methods in Molecular Biology, vol 1421. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3591-8_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3591-8_19

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3589-5

  • Online ISBN: 978-1-4939-3591-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics