Skip to main content

mCarts: Genome-Wide Prediction of Clustered Sequence Motifs as Binding Sites for RNA-Binding Proteins

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1421))

Abstract

RNA-binding proteins (RBPs) are critical components of post-transcriptional gene expression regulation. However, their binding sites have until recently been difficult to determine due to the apparent low specificity of RBPs for their target transcripts and the lack of high-throughput assays for analyzing binding sites genome wide. Here we present a bioinformatics method for predicting RBP binding motif sites on a genome-wide scale that leverages motif conservation, RNA secondary structure, and the tendency of RBP binding sites to cluster together. A probabilistic model is learned from bona fide binding sites determined by CLIP and applied genome wide to generate high specificity binding site predictions.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Licatalosi DD, Darnell RB (2010) RNA processing and its regulation: global insights into biological networks. Nat Rev Genet 11:75–87

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Ray D, Kazan H, Cook KB et al (2013) A compendium of RNA-binding motifs for decoding gene regulation. Nature 499:172–177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Cook KB, Kazan H, Zuberi K et al (2011) RBPDB: a database of RNA-binding specificities. Nucleic Acids Res 39:D301–D308

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Chasin LA (2007) Searching for splicing motifs. Adv Exp Med Biol 623:85–106

    Article  PubMed  Google Scholar 

  5. Galarneau A, Richard S (2005) Target RNA motif and target mRNAs of the Quaking STAR protein. Nat Struct Mol Biol 12:691–698

    Article  CAS  PubMed  Google Scholar 

  6. Licatalosi DD, Mele A, Fak JJ et al (2008) HITS-CLIP yields genome-wide insights into brain alternative RNA processing. Nature 456:464–469

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. König J, Zarnack K, Rot G et al (2010) iCLIP reveals the function of hnRNP particles in splicing at individual nucleotide resolution. Nat Struct Mol Biol 17:909–915

    Article  PubMed  PubMed Central  Google Scholar 

  8. Moore MJ, Zhang C, Gantman EC et al (2014) Mapping Argonaute and conventional RNA-binding protein interactions with RNA at single-nucleotide resolution using HITS-CLIP and CIMS analysis. Nat Protoc 9:263–293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Darnell RB (2010) HITS‐CLIP: panoramic views of protein–RNA regulation in living cells. Wiley Interdiscipl Rev RNA 1:266–286

    Article  CAS  Google Scholar 

  10. Blencowe BJ, Ahmad S, Lee LJ (2009) Current-generation high-throughput sequencing: deepening insights into mammalian transcriptomes. Genes Dev 23:1379–1386

    Article  CAS  PubMed  Google Scholar 

  11. Maticzka D, Lange SJ, Costa F et al (2014) GraphProt: modeling binding preferences of RNA-binding proteins. Genome Biol 15:R17

    Article  PubMed  PubMed Central  Google Scholar 

  12. Cereda M, Pozzoli U, Rot G et al (2014) RNAmotifs: prediction of multivalent RNA motifs that control alternative splicing. Genome Biol 15:R20

    Article  PubMed  PubMed Central  Google Scholar 

  13. Han A, Stoilov P, Linares AJ et al (2014) De novo prediction of PTBP1 binding and splicing targets reveals unexpected features of its RNA recognition and function. PLoS Comput Biol 10:e1003442

    Article  PubMed  PubMed Central  Google Scholar 

  14. Zhang C, Lee K-Y, Swanson MS et al (2013) Prediction of clustered RNA-binding protein motif sites in the mammalian genome. Nucleic Acids Res 41:6793–6807

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Jelen N, Ule J, Živin M et al (2007) Evolution of nova-dependent splicing regulation in the brain. PLoS Genet 3:e173–e1847

    Article  PubMed Central  Google Scholar 

  16. Stein LD (2002) Unix survival guide. John Wiley, Hoboken, NJ

    Book  Google Scholar 

  17. Buffalo V (2015) Bioinformatics data skills. O'Reilly Media, Sebastopol, CA

    Google Scholar 

  18. Zhang C, Frias MA, Mele A et al (2010) Integrative modeling defines the Nova splicing-regulatory network and its combinatorial controls. Science 329:439–443

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Weyn-Vanhentenryck SM, Mele A, Yan Q et al (2014) HITS-CLIP and integrative modeling define the rbfox splicing-regulatory network linked to brain development and autism. Cell Rep 6:1139–1152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Hinrichs AS, Karolchik D, Baertsch R et al (2006) The UCSC genome browser database: update 2006. Nucleic Acids Res 34:D590–D598

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Lauren E. Fairchild and Huijuan Feng for their assistance in testing the protocol and for providing feedback on the manuscript. This work was supported by grants from the National Institutes of Health (NIH) (R00GM95713) and the Simons Foundation Autism Research Initiative (297990 and 307711) to C.Z.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chaolin Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Weyn-Vanhentenryck, S.M., Zhang, C. (2016). mCarts: Genome-Wide Prediction of Clustered Sequence Motifs as Binding Sites for RNA-Binding Proteins. In: Lin, RJ. (eds) RNA-Protein Complexes and Interactions. Methods in Molecular Biology, vol 1421. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3591-8_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3591-8_17

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3589-5

  • Online ISBN: 978-1-4939-3591-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics